

IMPLEMENTATION OF NORTH AMERICAN DATUM OF 1983 INTO THE NOS NAUTICAL CHARTING PROGRAM

August 1985

U.S. DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration
National Ocean Service

IMPLEMENTATION OF NORTH AMERICAN DATUM OF 1983 INTO THE NOS NAUTICAL CHARTING PROGRAM

Oren E. Stembel, Jr. William J. Monteith
Marine Chart Branch
Nautical Charting Division
Rockville, MD 20852

August 1985

U.S. DEPARTMENT OF COMMERCE Malcolm Baldrige, Secretary
 National Oceanic and Atmospheric Administration
 Anthony J. Calio, Administrator

National Ocean Service
Paul M. Wolff, Assistant Administrator
Office of Charting and Geodetic Services
R. Adm. John D. Bossler, Director

The authors would like to express their appreciation to the following persons who provided input or reviewed this report: John Spencer, Edward McKay, John Love, and Jim Stem of the National Geodetic Survey Division; Capt. C. William Hayes, Capt. Lavon Posey, Cdr. Donald Nortrup, Dennis Romesburg, James Gearhart, Howard Danley, Erich Frey, John Weir, Jeffrey Stuart, Frederick Ganjon, and Richard Hogan of the Nautical Charting Division.

We would like to express our special appreciation to Eleanor Andrēe for her editorial assistance, and to Mary Himmelfarb, Annie Gorgone, and Rolland Gant for their timely word processing and reproduction support.

Mention of a commercial company or product does not constitute an endorsement by the U. S. Government. Use for publicity or advertising purposes of information from this publication concerning proprietary products or the tests of such products is not authorized.
Acknowledgment ii
Executive Summary 1
I. Introduction 3
II. Datum Conversion Considerations 5
A. Existing chart datums 5
B. Magnitude of datum shift 6
C. Criteria for changing projection 6
D. State plane coordinate systems. 10
E. Datum conversion constraints 14
III. Datum Conversion Alternatives 17
A. Cartographic datum conversion options 17
B. Impact on chart production 21
C. Resource requirements 24
D. Conclusions 25
IV. Datum Conversion Plan Options. 27
A. Objectives 27
B. Plan options 27
C. Discussion of options 28
v. Recommendations 33
A. NAD 83 datum conversion policy 33
B. NAD 83 datum conversion plan 34
Appendix A Report to the United States-Canada Hydrographic Commission by Committee on Horizontal Datums, March 1980 35
Appendix B NAD 83 conversion factors and proposed implementation schedule for NOS nautical charts 46
Appendix C Option 4: Datum conversion costs 71

FIGURES

1. Expected latitude change from NAD 27 to NAD 83 (in meters) 7
2. Expected longitude change from NAD 27 to NAD 83 (in meters) 8
3. Plot of projection shift criterion 11
TABLES
4. Specifications for standard features appearing on NOS nautical charts 9
5. NOS charts/insets: summary by scales 12
6. Datum conversion options 21
7. "Conversion note" implementation schedule 27
8. Option 1: Automated information system (AIS) datum conversion schedule 29
9. Chart edition (print) cycles 31
10. Option 4: Hybrid datum conversion schedule 32

The National Ocean Service (NOS) publishes approximately 960 nautical charts in support of recreational, military, and commercial navigation on the coastal and inland Federal waters of the United States and its territories. More than 2 million charts are sold annually, with the military purchasing about 40 percent of this total. Intended to facilitate the movement of waterborne commerce and promote marine safety, the nautical chart is designed and compiled to provide accurate marine information for users ranging from the unsophisticated to those who employ satellite navigation for determining vessel position. The nautical chart has been recognized in the United States as such an indispensable navigation tool that the U.S. Code of Federal Regulations requires commercial vessels in excess of 1,600 gross tons to carry charts of the waters upon which they operate.

The conversion of the NOS suite of nautical charts to North American Datum of 1983 (NAD 83) will require careful planning to minimize the workload impact upon an already heavily strained cartographic system, to assure efficient utilization of resources, and to accomplish the full datum conversion in a timely manner. Although the datum conversion will require extensive cartographic effort to revise both the graphic and digital nautical charting data bases, most nautical chart users will not be aware of this change to the horizontal datum.

This report discusses the following problems or considerations that must be addressed before an effective datum conversion plan can be developed:

- NOS has approximately 140 charts that are not compiled on the North American Datum of 1927 (NAD 27).
- NOS has 236 charts and 187 insets that contain State plane coordinate grid ticks which will have to be revised to reflect the relationship of the various State plane coordinate systems to NAD 83.
- NOS has 262 charts containing LORAN and/or OMEGA electronic positioning lattices which have to be revised because of NAD 83.
- The magnitude of the datum shift varies from a few meters to more than i nautical.mile.
- No cartographic policy exists for identifying the criteria that justify shifting a chart's projection.

These important factors have been considered in formulating the conclusions and recommendations for the conversion of NOS nautical charts to NAD 83.

Several constraints are addressed that affect timely datum conversion. These constraints involve current personnel resources, current availability of only preliminary NAD 83 values, and the current and near-future production capability of the developing automated chart production system.

Several alternatives for conversion to NAD 83 are identified. Each alternative is a different mix of cartographic actions and production techniques producing a variety of nautical products. Each produces either a temporary or permanent conversion solution, requires different and varying amounts of resources to accomplish the conversion, and causes an impact on the normal cartographic workload associated with the annual production of charts.

Finally, four datum conversion plans are discussed with a hybrid manual/automated cartographic plan recommended as the most feasible for accomplishing NAD 83 conversion within a 5-year time frame. The cost of this conversion is estimated to be $\$ 1,098,400$. The successful accomplishment of this conversion will require several policy decisions by upper management within the office of Charting and Geodetic Services (C\&GS). Specific datum conversion policy recommendations are also presented.

I. INTRODUCTION

Abstract

On April 17, 1978, at the first meeting of the United States-Canada Hydrographic Commission (USCHC), R.Adm. Allen L. Powell (U.S. member), suggested that both the Canadian Hydrographic Service (CHS) and the National Ocean Service (NOS) should begin addressing the problems expected in adopting the new horizontal datum for North America.

In May 1979, Mr. David Gray, CHS, and Mr. William Monteith, NOS, were named by the USCHC as members of a two-person ad hoc Committee on Horizontal Datums to identify and study expected problems when each agency converted its nautical charts to the new geocentric datum. By then, the new datum had been identified as the "North American Datum of 1983," or "NAD 83."

A report was prepared by the committee and presented to the USCHC in March 1980 (appendix A). This report identified 16 major issues, questions, or problems which would have to be addressed for an effective and efficient transitioning to NAD 83 by both organizations. A review of that report finds the conclusions and recommendations drawn in 1980 to be essentially valid today.

The purpose of this 1985 report is to discuss several options available for datum conversion of nautical charts to NAD 83 within the NOS nautical charting program. Discussed will be the probable conversion time and resources required under each option for the suite of NOS charts. A recommended conversion schedule will be proposed which considers fully the operating realities faced by NOS today based on an expansion of the conclusions and recommendations formulated in 1980.

In preparing this report, the following questions were considered in arriving at the eventual conclusions and recommendations:

- Upon which datums are NOS chart projections referenced or compiled?
- Considering each existing chart datum, how much projection shift will be required for the chart to be on NAD 83?
- How will the State plane coordinate grids be affected?
- How will NAD 83 affect the "graphic" nautical chart?

O How will NAD 83 affect the automated nautical charting data base?

- What constraints are imposed on immediate conversion of nautical charts to NAD 83?
- What options exist for implementing NAD 83 on the graphic chart?

The Chief, Nautical Charting Division (NCD), has identified the timely conversion of all NOS nautical charts to NAD 83 as a primary operating objective for the Marine Chart Branch (MCB). To achieve this objective, several cartographic factors will be considered and their impacts on datum conversion discussed. The principal factor is the amount of actual positional shift required between the present chart datum and NAD 83. Knowing the magnitude of the shift and the scale of the chart, the effect of this shift on each nautical chart will be assessed and appropriate datum conversion methods discussed. The resulting costs of the cartographic and reproduction services workload also will be determined. Finally, datum conversion policy recommendations for implementing the new horizontal datum will be developed and a realistic implementation schedule proposed. A methodology was developed to evaluate various factors and arrive at this realistic implementation schedule. The following considerations were investigated and an assessment made of their respective impact on the production of nautical charts.

A. Existing Chart Datums

The current suite of NOS nautical charts is compiled on or referenced to the following datums:

Datums

North American Datum of 1927
U.S. Standard Datum*

Old Hawaiian Datum
Puerto Rico Datum
Local Astronomic Datum
Guam 1963 Datum
Preliminary NAD 27
Preliminary NAD 83
Local datum

| No. of
 charts | |
| ---: | ---: | ---: |
| 830
 Percentage | |
| 51 | 85.6 |
| 36 | 5.3 |
| 29 | 3.7 |
| 15 | 3.0 |
| 2 | 1.5 |
| 2 | 0.2 |
| 1 | 0.2 |
| 1 | 0.1 |
| | 0.1 |

*Sometimes referred to as "1902 Datum" or "NAD 1902".

In addition, two charts are compiled on unknown datums, and the recreational chart of the New York State Barge Canal is published without a datum projection. In total, there are 140 charts which are not compiled on NAD 27. These charts are referred to in this report as "orphan datum" charts and their respective impact on NAD 83 conversion will be discussed later.

Appendix B provides a complete listing of all NOS nautical charts and their respective datum.

B. Magnitude of Datum Shift

Figures 1 and 2 portray graphically the amount of latitudinal and longitudinal shift in meters between NAD 27 and preliminary NAD 83 values for the coastal areas of the continental United States, including the Great Lakes. Overall, the smallest amount of shift occurs in the Great Lakes region while the greatest shift in both latitude and longitude is in the Aleutian Islands of Alaska (in excess of 150 m along both axes). In general, the range of shift varies from 0 to 25 m in the Great Lakes, 15 to 50 m along the Atlantic coast, 20 to 40 m along the coast of the Gulf of Mexico, 80 to 100 m along the Pacific coast, and 100 to 160 m in Alaska.

The shift between the "orphan" datums and NAD 83 will be greater in most cases. For example, the National Geodetic Survey (NGS) reports that for charts of the Hawaiian Islands, the shift between the Old Hawaiian Datum and NAD 83 will be approximately 360 m in latitude and 285 m in longitude. The resultant shift between the Puerto Rico Datum and NAD 83 is about 220 m .

The NOS charts of the Pacific Islands (Guam, Wake Island, Kingman Reef, Palmyra Atoll, Samoa Islands, Johnson Atoll, and others) will be converted to the World Geodetic System 1984 (WGS 84) datum and will require a projection shift in excess of 150 m . Final WGS 84 datum values had not been released by the Defense Mapping Agency (DMA) at the time this report was prepared.

C. Criteria for Changing Projection

Once the probable magnitude of datum shift had been determined, it was necessary to define the criterion that would determine whether the chart projection would be shifted cartographically. In developing these criteria, the existing line weights for projections and other charted features were considered. Table 1 lists three line weight groups of cartographic features routinely found on NOS nautical charts. Since the standard width for a chart projection line is 0.1 mm , or 0.004 inch, it was decided that a projection would be revised whenever the datum shift resulted in a space between the old and new projections equal in width to one projection line. This meant that whenever the datum shift at chart scale equalled or exceeded 0.2 mm , the projection would be reconstructed; when less than 0.2 mm , only a revision to the datum reference note would be required. The 0.2 mm is the centerline-to-centerline dimension between the old and new projection lines with a 0.1 mm space between the lines.

Using this 0.2 mm projection shift as a criterion, a 1:50,000-scale chart, for example, would have its projection revised when the datum shift exceeds 10 meters.

Figure 1.--Expected latitude change from NAD 27 to NAD 83 (in meters).

Figure 2.--Expected longitude change from NAD 27 to NAD 83 (in meters).

Table 1.--Specifications for standard features appearing on NOS nautical charts

Line weight	Feature
$0.10 \mathrm{~mm}\left(0.004{ }^{\prime \prime}\right)$	Contour line--topographic (intermediate) Depth curves
	Tint outline--blue, gold, green (when not low water line)
	Traffic lane precautionary area-outline for screen Projection lines
	Electronic positioning lattice--LORAN and OMEGA lines
$0.15 \mathrm{~mm}\left(0.006^{\prime \prime}\right)$	Bridge detail (including fenders)
	Crib--bare at shoreline datum (to scale)
	Line, misc.--runway, tunnel entrance, fort, etc.
	Mineral lease block boundary--block subdivisions Groin and jetty
	Range line--navigable portion
	Shoreline--apparent --manmade
	Structure--large, hatchured (to scale) --visible (generally detached
	from shoreline); i.e., crab pen, floating drydock, hulk
	Wharf, bulkhead, breakwater, and pier
$0.20 \mathrm{~mm}\left(0.008^{\prime \prime}\right)$	Anchorage berth
	Anchorage area
	Isogonic and agonic lines
	Mineral lease block boundary--exterior
	Contour line--topographic (index)

Figure 3 shows the relationship between chart scale and datum shift, or the condition where the user of NAD 83 data would incur a 0.2 mm plotting error if the existing chart projection was not shifted. For the purpose of evaluating the cartographic impact of implementing NAD 83, the controlling scale for each chart was considered to be the largest scale panel or inset on the chart. Table 2 is a tabulation of the charts by scale, including controlling insets, which were evaluated against the 0.2 mm projection change criterion. This evaluation identified those charts that would require only a revision to the existing datum reference note. The remainder would require a revision of the chart projection. Appendix B provides a detailed chart-by-chart analysis. More than 80 percent of the charts and chart panels are compiled at a scale larger than 1:100,000. Since most coastal areas have a total shift in either latitude or longitude greater than 20 m , it was concluded that more than 90 percent of the charts would require a projection shift before they could be considered as having been compiled on NAD 83.

D. State Plane Coordinate Systems

The NOS receives an extensive amount of new data each year which is used to revise existing nautical charts or to compile new charts. Not all of the data received are referenced. to the same geodetic projection of the chart, but may be referenced instead to a local or State plane coordinate system. For example, even though most of the charts are compiled on a Mercator projection, the majority of new charting data received from the U.S. Army Corps of Engineers (COE), such as channel improvement depths, breakwater and pier construction, etc., are usually referenced to a local or state plane coordinate system. These data would normally be converted to a projection common to the chart before being applied.

State plane coordinate systems for the United States were defined for most States in the 1930 's. These coordinate systems were initially intended to render greater utility to geodetic control stations for highway engineers, land surveyors, and others who were accustomed to using grid (rectangular) coordinates (x and y) rather than geodetic (geographic) coordinates (latitude and longitude). The State plane coordinate projections were designed so that the scale factor (the ratio of the geodetic to grid distances) did not exceed 1 part in 10,000. Actually the scale factors range from 0.99990 to 1.00010 . This required the larger States to be divided into several zones. The Lambert conformal conic projection was chosen for those States, or zones, that were long in the east-west direction, such as Pennsylvania. The transverse Mercator projection was chosen for States or zones of long north-south extent, such as Indiana.

When the COE began using the State plane coordinate systems for referencing or controlling their surveying, dredging, breakwater construction, and other harbor and waterway improvement projects,

Figure 3.--Plot of projection shift criterion.

Table 2.--NOS charts/insets: summary by scales

$\begin{aligned} & \text { Scale } \\ & (1: K) \end{aligned}$	Charted area						Total	
	Atlantic Gulf		Pacific		Great Lakes			
	Charts	Insets*	Charts	Insets*	Charts	Insets*	Charts	Insets*
5	4	9	11	24	4	19	19	52
10	44	63	39	84	15	4	98	191
15	14	14	8	13	18	27	40	54
20	64	77	61	73	3	8	128	158
25	7	7	17	16	4	2	28	25
30	3	4	10	9	19	10	32	23
40	126	106	93	66	24	20	243	192
50	6	5	42	40	1	0	49	45
60	1	1	-	-	7	2	8	3
80	89	75	57	34	17	2	163	111
100	5	2	14	7	3	1	22	10
120	-	-	1	0	19	2	20	2
150	4	4	6	4	1	0	11	8
200	2	2	21	16	-	-	23	18
250	1	1	3	3	1	1	5	5
300	2	2	11	8	2	0	15	10
400	11	11	1	1	2	2	14	14
500	1	1	-	-	3	3	4	4
600	2	2	11	10	2	2	15	14
1000	3	3	5	4	-	-	8	7
1500	-	-	4	3	1	1	5	4
2000	1	1	2	2	-	-	3	3
3500		1	5	5	-	-	5	5
10000	-	-	1	1	-	-	1	1
TOTAL	390		423		146		959	

*Figures represent the number of charts or insets (panels) in the NOS nautical chart suite for the scale shown. Whenever a chart contained multiple scales, insets or panels, the largest scale was counted.
the NOS cartographers soon recognized the benefit of having a State plane coordinate grid system on the chart to facilitate application of COE data. The NOS has printed State plane coordinate grid ticks along the borders and within selected charts and insets for almost 40 years. NOS currently publishes 236 charts and 187 insets that contain State plane coordinate grid ticks. Generally, the scale of these charts and/or insets is 1:40,000 or larger.

The implementation of NAD 83 will require the existing State plane coordinate systems to be revised. Correspondingly, every nautical chart and/or inset containing State plane coordinate grid ticks will also have to be revised. Some of the reasons for these revisions are as follows:

1. The State plane coordinate systems currently shown on charts and insets are mathematically dependent upon NAD 27. The NAD 83 is based on a different ellipsoid than NAD 27. This ellipsoid is earth-centered rather than the North American "best fit" position for NAD 27. This will result in a shift in the present State plane coordinate systems when the charts are converted to NAD 83. Whether the shift is noticeable will depend on the magnitude of the shift and the scale of the chart or inset.
2. The NAD 83-dependent State plane coordinate systems will have grid values published in meters. The present NAD 27dependent State plane coordinate grid values are published in feet. The impact of this units' change will be evident in the rounding of metric coordinate values assigned to the iritial point in each State plane coordinate system. For example, if the longitudinal false easting value for the initial point in a Lambert conformal projection zone was 2,000,000 ft under the NAD 27-system, a value of $609,600 \mathrm{~m}$ would result for the NAD 83system if a true conversion of units was performed. However, to preserve easy-to-use values for the new metric grid system, a value of $600,000 \mathrm{~m}$ might be selected. This rounding off in selecting values for the initial point in each State plane coordinate system will require every State plane coordinate system charted to be recompiled.
3. Many of the State plane coordinate zones will change numerical values because the States have selected new false northings and false eastings that are radically different from the simple feet to meter conversion. For example, most NAD 27 false northings were selected to be 0 ft. Many States are choosing false northings of $100,000,200,000$, or $1,000,000 \mathrm{~m}$ for the initial point in the new NAD 83 State plane grids.

To assess the impact of and justification for converting the charts and insets to the new State plane coordinate values, three questions must be addressed. The first is the timetable for when the preponderance of NAD 83-dependent State plane coordinate referenced data will begin to arrive from suppliers such as the Corps of Engineers. The second is whether there will be an
orderly and timely transition by all COE districts? The third question results from recognizing that the State plane coordinate grid ticks are shown for the primary use and benefit of NOS cartographers. Therefore, is the cost of correcting the existing charts justified when evaluated against the benefit derived by the cartographers? These questions will be addressed when developing NAD 83 implementation recommendations later in this report.

E. Datum Conversion Constraints

1. Personnel Resources

In the past year the number of production cartographers (i.e., cartographers available to manually compile and review nautical charts) has steadily declined due to transition of the NOS nautical charting program from manual to automated cartographic operations. Recently a large number of cartographers previously available for manual production were transferred to the Automated Cartographic Production Group (ACPG). The remaining small staff of cartographers who were not transferred to the ACPG will have difficulty maintaining these manually produced charts. The impact of adding NAD 83 conversions to their already heavy workload will be discussed later in this report. A correspondingly similar reduction in the number of negative engravers supporting chart production has occurred also in recent years. During the last 4 years, the number of NOS negative engravers has been reduced by 74 percent, while over the past 9 months the number of manual nautical cartographers has been reduced by 63 percent.

2. Preliminary NAD 83 Data

At present, only preliminary NAD 83 figures are available. The final values will not be available until December 1985. The difference between the preliminary and the final figures is estimated by NGS to be approximately 3 to 5 m . A 5-meter error translates into a longitudinal error of about 0."2 along the North Carolina coast, or a shift of about 0.2 mm at a scale of $1: 25,000$. The impact of using preliminary NAD 83 values on the manual and automated data bases is assessed as follows:
a. Manual Data Base. The manual data base is graphic in nature and chart-scale dependent. The data base is made up of individual discrete charts. Datum shifts below a certain threshold, at chart scale, would have no effect on the data base. When the datum shift at chart scale is less than the 0.2 mm plotting threshold, the chart's horizontal datum will be considered to be NAD 83 with no revision to the projection required.
b. Automated Data Base. This data base comprises charting data that, prior to loading, are either position-dependent or scaledependent. Position-dependent data, for example, have been obtained from the digital records of contemporary Nos field surveys, while scale-dependent data have been obtained by
digitizing an existing graphic, such as a chart. Even though chart feature data are either position-dependent or scaledependent, once loaded these data are qualified or treated alike; i.e., the data are defined as having a positional accuracy of a hundredth of a second in latitude and longitude regardless of their source.

In summary, preliminary NAD 83 values can be used to convert many of the graphic charts to NAD 83 because the expected shift between preliminary and final values will not be significant at the scale of the chart. However, final values may change the number of charts currently requiring a projection shift depending on the magnitude and direction of the change between preliminary and final NAD 83 values. In the case of the automated data base, use of preliminary values will require that the data base be revised once again when final NAD 83 figures become available.

3. "Orphan" Datums

Charts which are not compiled on NAD 27 are classified as being compiled on "orphan datums." In section II A it was stated that 51 charts of the Great Lakes are currently published on the U.S. Standard Datum. In other regions, an additional 15 charts are published on astronomic datums (mainly in Alaska and the Pacific Islands), 36 charts are on the Old Hawaiian Datum, and 29 charts are on the Puerto Rico Datum. In addition, two charts are compiled on unknown datums, and a recreational chart is published without a datum projection. An assessment is being made of each of these charts to determine if NAD 83 datum conversion can be achieved with the information currently available. It may be necessary to request special field survey support to obtain NAD 83 positions for prominent features on several of these orphan datum charts before new chart projections can be constructed. Appendix B lists the approximately 140 orphan datum charts.

Even though NAD 83 can be extended to the NOS charts of other Pacific Islands, such as Guam and Samoa, it was decided by the director of Charting and Geodetic Services that these charts will be compiled on WGS 84. For charting purposes, there is virtually no difference between WGS 84 and NAD 83 , and the use of WGS 84 will satisfy a Department of Defense requirement. It is expected that DMA will be able to provide the information necessary to accomplish the datum conversion in these areas.

4. Electronic Positioning Lattices

Because of the great distances between the master and slave transmitting stations comprising a LORAN or OMEGA chain, it is expected that the datum conversion values for the position of each transmission station will vary. What is not known at present is how these variations will affect the hyperbolic lattice for those charts which are located in the outer reaches of the lattice. It is possible that many of the LORAN and OMEGA lattices will have to be recompiled and this might require
assigning a higher production priority for these charts. At present, NOS publishes 248 LORAN charts, 22 additional charts containing both OMEGA and LORAN lattices, and 2 charts containing only OMEGA. These charts are identified in appendix B. The same 0.2 mm criteria used to justify a projection shift will be employed in assessing the need to shift or replot an electronic lattice.

III. DATUM CONVERSION ALTERNATIVES

A. Cartographic Datum Conversion Options

The NOS employs a variety of chart printing classifications and other nautical products in an effort to update its nautical charts, or transmit critical nautical information to chart users in the interim between new edition printings of the charts. Some of these methods may be applicable for accomplishing the conversion to NAD 83. Before discussing these options, however, it is necessary to identify those cartographic actions which could be used to accomplish the datum conversion. These specific actions are used in the production of a type of chart printing or the publishing of a separate product; i.e., Notice to Mariners.

1. Cartographic Actions

Several cartographic actions are appropriate options for converting an existing nautical chart to NAD 83, for producing new charts on NAD 83, or for transmitting NAD 83 conversion information to the chart user independent of a chart printing. Before these cartographic actions can occur, however, the nautical chart data base must be updated. Update of the data base and possible cartographic actions that may follow are discussed under the following headings:
a. Data base update (graphic and/or digital)
b. Temporary datum conversion note
c. Datum reference note revision
d. New projection
e. NAD 83 projection ticks
f. State plane coordinate grid ticks
g. Chart overprinting
h. Chartlet
a. Data Base Update. Before a new edition of a chart can be published on NAD 83, the appropriate manual and/or automated data base must be updated to reflect NAD 83 chart projection information. For the manual data base, this will involve applying NAD 83 note and projection information to the current chart drawing. For the automated data base, this will involve converting the existing digital data base to NAD 83 and loading new data only after they have been converted to NAD 83. It is concluded that new digital source data and the existing digital data base should be converted using only final NAD 83 values.
b. Temporary Datum Conversion Note. When the shift in projection is plottable, the projection on the black plate should be revised on the next new edition of the chart. If available resources or other considerations do not permit revising the projection at that time, a temporary note describing the magnitude of the shift
to NAD 83 could be added to the new edition. The values shown in the note will represent the mean difference, over the limits of the chart, between the chart datum and NAD 83. An example of a temporary note follows.

HORIZONTAL DATUM

The horizontal reference datum of this chart is (name and date). Geographic positions on North American Datum of 1983 (NAD 83) must be corrected an average of ___ " northward/southward and ___ eastward/westward to agree with this chart. For charting purposes, NAD 83 is considered equivalent to the World Geodetic System 1984 (WGS 84) datum. The correction values are based on preliminary NAD 83 data.

This note would be retained until the chart is fully converted (projection shifted) to NAD 83. At that time the wording of the note would be reversed to facilitate the transfer of data from NAD 83 to the previous datum. This revised note would remain on the chart until it was deemed no longer necessary. An example of the revised note follows.

HORIZONTAL DATUM

The horizontal reference datum of this chart is North American Datum of 1983 (NAD 83), and for charting purposes is considered equivalent to the World Geodetic System 1984 (WGS 84). Geographic positions referred to the (name and date) must be corrected an average of \qquad " northward/ southward and \qquad " eastward/westward to agree with this chart. The correction values are based on preliminary NAD 83 data.

[^0]c. Datum Reference Note Revision. When the magnitude of the shift between the existing chart datum and NAD 83 will not result in a significant plottable difference (less than 0.2 mm), the conversion to NAD 83 can be accomplished by revising the datum reference note in the title block of the chart and, for informational purposes, adding a temporary chart note describing the magnitude of the datum shift. An example of this note follows.

HORIZONTAL DATUM

The horizontal reference datum of this chart is
North American Datum of 1983 (NAD 83), and for charting
purposes is considered equivalent to the World Geodetic
System 1984 (WGS. 84). Geographic positions referred to
the (name and date) do not require conversion to NAD 83
for plotting on this chart.
d. New Projection. Whenever the shift between the present chart datum and NAD 83 is significant $(0.2 \mathrm{~mm}$ or greater at chart scale), the chart projection will have to be revised. The most efficient and cost-effective method available to recompile the chart on the new projection is to use the NOS Automated Information System (AIS). The AIS is basically comprised of a nautical charting digital data base and a computer/work station interactive system by which the digital chart information can be loaded and updated. These data are then used to drive plotters in the automated nautical charting system which make the different graphic plates used to print a chart when a new edition is required. However, the production capability of the AIS is not up to a level required for an ambitious program such as the datum conversion of the suite of NOS nautical charts. Even if the production level existed, much of the data for the charting area of responsibility is not yet loaded into the digital data base, nor will it be loaded in the near future. Therefore, it is not possible to convert all of the new editions to NAD 83 using the AIS. The alternative is to revise the projections manually at the time the chart is scheduled for printing a new edition. The recompilation of the projection would become part of the new edition compilation procedure and would use computer-assisted cartographic techniques. The amount of shift at chart scale would be determined from data provided by the NGS. The cartographer would make the necessary projection corrections to the drawing. This action will be hampered by the fact that in most cases automated plots of the NAD 83 projection cannot be used to revise the chart. These mathematically correct projection plots will not fit the existing chart drawings due to distortions in the graphic that have occurred over the years.
e. NAD 83 Projection Ticks. When the shift between the datums is significant, the NAD 83 projection ticks could either be added along the neatline or at the projection intersections within the chart. Adding projection ticks has some of the same drawbacks as revising the projections; i.e., it is both time-consuming and labor-intensive. Unlike revised projections, however, projection ticks add little useful information and they tend to degrade chart clarity.
f. State Plane Coordinate Grid Ticks. State plane coordinate grid ticks are currently printed on 236 nautical charts and 187 insets. These grid ticks are primarily used by NOS cartographers in the application of charting information received from the COE. For this reason, these NAD 27-dependent grid ticks will not become obsolete until the COE begin to furnish charting data on the new NAD 83-dependent State plane coordinate systems. Discussions with COE personnel have indicated that it will be close to 10 years before they begin extensive implementation of NAD 83 State plane coordinate control in their survey and waterway maintenance programs. In-house discussions with NOS cartographers have led to the conclusion that it might be justified to simply delete the existing grid ticks when the chart projection is converted to NAD 83 and allow the cartographers to use other methods to apply future COE data. If it is decided to publish NAD 83 State plane coordinate grid ticks when the COE begin to use this control, then the present cartographic methods will prevail when the charts and insets are revised.
g. Chart Overprinting. Whenever a projection requires a shift of 0.2 mm or greater for the chart to be on NAD 83 , this conversion could be accomplished by overprinting the NAD 83 projection in a screened color on the next new edition, or revised printing of the chart. However, this option is a temporary solution posing the following problems: it would increase chart clutter, add to the already heavy cartographic workload, and it would be costly. Furthermore, a degradation of projection accuracy could result from the projection being produced on a plate independent of the black plate. A poor projection registration could exceed the 0.2 mm projection change criterion, thereby defeating the intent of this cartographic action. It was concluded that overprinting an NAD 83 projection on an NAD 27 chart should be avoided.
h. Chartlet. The compilation of a chartlet as part of a Notice to Mariners would be a temporary solution for NAD 83 conversion of a small-scale chart containing large-scale insets. The cartographic work involved to achieve this result is considered too great, and it was concluded that using a chartlet to achieve NAD 83 conversion should be avoided.

2. Types of Printings/Products

The previously discussed cartographic actions can be used to produce several types of nautical products for either temporarily or permanently converting the nautical charts to NAD 83. These
products are the traditional Notice to Mariners and/or the various types or classifications of chart printings; i.e.o new edition, revised printing, reprint, new chart, and reconstructed chart. Table 3 shows the relationship between the cartographic action and the type of product or printing which it impacts.

Table 3.--Datum conversion options

Cartographic Actions	Printing Classifications*					
	NM	Rep	RP	NE	RC	NC
a. Data base update	x		x	x	x	X
b. Temporary datum conversion note	X		X	x	X	X
c. Datum reference note	X		X	X	x	
d. New projection			x	x	x	x
e. NAD 83 projection ticks			x	x		
f. State plane coordinate grid ticks			x	X	X	x
g. Chart overprinting			X	X		
h. Compile a chartlet	x					
* NM $=$ Notice to Mariners \quad NE	NE = New edition of chart					
Rep $=\begin{aligned} & \text { Reprint of existing } \\ & \text { chart }\end{aligned} \quad$ RC	$=$ Rec	nstr chart	ucti		\ddagger	
$R P=\underset{\text { Revised printing of }}{\text { chart }} \quad$ NC	NC = New chart (lst edition)					

When the available cartographic actions are analyzed against the product produced, several general conclusions can be reached. One, the "reprinted" (Rep) chart will not aid in the conversion to NAD 83. Two, only actions $\underline{C}, \underline{d}$, and f will result in nontemporary conversion results. This, of course, recognizes that data base maintenance is a priority activity for all subsequent cartographic actions taken in the production of NOS charts.

B. Impact on Chart Production

The manual revision of the chart projection and State plane coordinate grid ticks, would have a significant impact on the number of charts produced, given the present number of production cartographers available. The amount of impact can be roughly estimated by examining the amount of time it now takes to compile an average chart and then determining how much extra time it will take to revise the chart projection and/or the projection on any chart panel or inset.

In 1983, Arthur Young \& Company (AYC) conducted a management efficiency study of the MCB. To develop their conclusions and recommendations, AYC first had to collect workload data associated with the production of nautical charts. AYC concluded
that MCB personnel required 229 hours to produce a new edition of an existing nautical chart from a maintained data base. An additional 42 hours per chart were required in the compilation and review processes associated with the compilation of Notice to Mariners published during the period between new editions. Collectively, these hours (271) were determined to be essential if the nautical charting data base was to be maintained at a level which prevented an accumulation of unapplied source data between new editions. A separate in-house study completed in 1984 concluded that 245 hours per chart were necessary to respond to the same nautical charting and Notice to Mariners workload identified by AYC. Both the AYC and the in-house studies were consistent in identifying the generic tasks performed in the production of a new edition. These tasks include:

Receive and evaluate source data
Update the nautical chart data base
Approve data base update
Compile Notice to Mariners for production
Prepare chart drawing for production
Order type
Review of compilation
Clear new edition for distribution
For the present suite of nautical charts, approximately 500 new editions must be produced annually to maintain the present edition cycle for each chart. As a conservative measure, using the workload hours per chart developed by the in-house study team in 1984, approximately 70 cartographers would be required to handle the inherent cartographic workload. In June 1984, the MCB had a cartographic staff of 71. With the present staffing (June 1985) of 26 cartographers, the annual manual chart production capability is estimated to be 185 charts.

In addition to the routine compilation hours discussed above, the cartographic time required to revise the projection on a chart will require an additional 24 hours, and on a chart panel, 20 hours. A count of the insets and panels on the existing chart suite shows that there is an equivalent of 0.45 insets per chart. Therefore, considering the number of panels per chart, each chart requiring a projection shift would require an average of 33 hours additional cartographic compilation time. This amounts to a workload increase of 13 percent, or an annual chart production decrease of 22 charts if additional resources are not provided. The 26 cartographers will only be able to produce 163 charts annually as a result of increased NAD 83 conversion workload, down from 185 charts.

Chart production would be further impacted by revisions to the electronic navigation lattices; i.e., LORAN and OMEGA. These revisions are estimated to require an additional 32 hours per chart. Of the 272 charts containing electronic lattices, it is estimated that 163 will require revisions. This will result in a
cartographic workload increase of 5,216 hours. If these revisions are spread over 5 years, a decrease in chart production of 44 charts per year would result.

An additional workload impact will also result from the conversion to NAD 83 of the NAD 27-dependent state plane coordinate systems which are currently published on various charts and insets. All existing grid ticks will require revision when NAD 83 is implemented as a result of both the difference between NAD 27 and NAD 83 and the related decision to publish the NAD 83dependent State plane coordinate grid values in metric units. It was estimated that the time, and therefore cost, to revise the grid ticks on the charts will be about 50 percent of the effort required to shift a chart projection, or 12 hours per chart. Revising the grid ticks on chart insets would require an additional 5 hours per inset. The impact of revising the State plane coordinate grid ticks on the 236 charts and 187 insets on which they are currently shown will result in an increase in the cartographic workload of 3,770 hours. If the total revision was to be accomplished during a 1-year period, a decrease in production of 16 charts would result. If the revision was spread over 5 years, the chart production decrease would be approximately 34 charts per year.

Reproduction time required to shift an existing chart projection is estimated to be 35 hours, and for a chart panel, 20 hours. Therefore, each chart requiring a projection shift would require an average of 44 hours additional reproduction time. The reproduction time required to revise the State plane coordinate grid ticks would approximate the same percentage of compilation time identified above, or $17 \frac{1}{2}$ hours per chart and 5 hours per inset.

As stated above, the conversion of NOS charts to NAD 83 by adding or revising a datum reference and/or transformation note would have little impact on chart production because these notes require little in the way of resources. This assumes that source data are received on the same datum as the chart. If source is received on some other datum, a datum conversion will be required and the cost incurred would adversely impact available resources.

It should be noted that the continuing decline in the number of nautical cartographers is also compounding the problems of effective and timely nautical chart production. Any increase in the cartographic workload resulting from NAD 83 conversion will only add to this problem.

C. Resource Requirements

Of the seven cartographic actions discussed in section III A, exclusive of maintaining the data base, two accomplish the datum conversion through the use of notes. These actions should require relatively little in the way of additional cartographic
compilation time, reproduction services time, and materials. However, these two actions, as well as the others mentioned, do depend on the data base being maintained as a priority effort. Initially, the resources required to add these notes are considered to be within the realm of normal chart production costs and, therefore, these costs have not been computed for this report. However, all incoming chart (source) data will not be on NAD 83. Therefore, compilation and review time can be expected to increase because of the conversions required to plot the data on the new datum. It is difficult at this time to assess this impact and the resultant cost on future manual chart production. However, it will be easier to handle if automated procedures can be employed. This will depend on the extent of the digital data base and the production capabilities of the automated nautical charting system under development.

Of the five other actions discussed, all would accomplish the conversion by an actual change to the chart's reference system; i.e., geodetic projection and/or State plane coordinate grid. As such, these methods would require a significant amount of personnel resources and material to implement if accomplished using manual cartographic procedures. However, if the projection and grid shifts were performed employing the AIS, the costs would be negligible once the digital data base has been converted to NAD 83. The reason for this is that the first edition of an AISgenerated chart will have a new black plate which contains the new projection. Under automation, a new projection can be generated each time a new edition is prepared for printing. Therefore, it makes no difference which datum the data are on. Furthermore, those AIS-generated charts not on NAD 83 will be easily converted once the AIS data base has been updated to NAD 83. It has been estimated by the ACPG that this data base conversion could cost $\$ 50,000$.

If the datum conversion is accomplished manually by adding NAD 83 projection lines or grid ticks onto the existing projection, the amount of resources required for cartographic services and materials would be roughly the same as required for shifting the projection, but would be somewhat less for reproduction services. Overall, however, this alternative would be more costly since it is considered to be only a temporary solution and would eventually require additional cartographic effort to permanently place the projection on NAD 83.

To assess the resources required to convert the NOS charts to NAD 83, the additional workload associated with the conversion of inset or chart panel projections must be considered. At a cost of $\$ 19.89$ per staff-hour for cartographic services and $\$ 21.50$ for reproduction services, the labor cost of shifting a projection is estimated to be $\$ 1,602$ per chart. An additional cost of $\$ 615$ per chart and $\$ 207$ per inset will be required to revise the State plane coordinate grid ticks. When material costs of $\$ 60$ per chart and $\$ 30$ per panel are included, the total cost of implementing NAD 83 is approximately $\$ 1,675$ for each chart requiring a projection shift.

When LORAN lattices need revision, even though the plotting is done by automation, it is estimated that an additional 32 hours of cartographic services and 35 hours of reproduction services would be required. Material costs would add an additional \$150. In total, an additional $\$ 1,540$ would be necessary for each chart requiring a change in the LORAN or OMEGA lattice.

In summary, it will require $\$ 1,507,000$ to shift the projections on approximately 900 NOS nautical charts if accomplished by manual cartographic methods, and $\$ 420,000$ to revise the electronic positioning lattices on 272 charts if accomplished by manual and automated cartographic methods. An additional $\$ 145,000$ will be required to publish new State plane coordinate grid ticks on 236 charts and $\$ 39,000$ to revise the grids on another 187 insets.

D. Conclusions

Whenever the required shift of the existing chart projection to NAD 83 is less than 0.2 mm at chart scale, the conversion shall be accomplished by revising the datum reference note on the chart. For informational purposes, a temporary datum transformation note will also be added to the new edition of the chart. Approximately 72 charts will be converted to NAD 83 in this manner.

For the remaining charts, only two cartographic options were concluded to be cost effective and feasible under present operating conditions. These two options are (1) the addition of a temporary datum transformation note or (2) the shifting of the chart projection. Another option considered, the addition of projection ticks, was concluded to be inefficient, not in the best interests of the chart user, and should not be used.

The decision to either revise the chart projection or to add a datum transformation note can be interpreted as deciding to fully implement NAD 83 or to partially implement NAD 83. If NAD 83 is implemented fully, the majority of the NOS chart suite, about 93 percent or 900 charts, will require a projection revision. A projection revision will result in increased costs and, without additional cartographic personnel, a decrease in the annual production of new editions. If NAD 83 is to be implemented as soon as possible, in lieu of waiting for increased production capability of the AIS, then the use of a temporary datum transformation note is considered justified as an interim measure because of the inherent cost of shifting a chart projection by manual cartographic procedures. Again, manually revising a chart projection is time consuming and costly, and would result in a correspondingly significant reduction in annual chart production. On the other hand, revising the chart projection using the AIS would cost virtually nothing once the data base has been converted to NAD 83. The drawback of using the AIS to implement the new datum is that it will take about 10 years to accomplish the conversion.

It is concluded that the least costly strategy for converting a chart to NAD 83 is to add an interim datum transformation note until a future new edition of the chart can be produced at a later date by the AIS using a data base on NAD 83. A faster implementation schedule can be realized through a hybrid manual/ automated cartographic effort. This would require some chart projections to be manually revised which will require additional chart compilation time, additional reproduction services and materials, and would result in decreased annual production of new editions.

The State plane coordinate grid ticks were added to the nautical charts to assist the NOS cartographers in the application of COE data referenced to these coordinate systems. Although the implementation of NAD 83 as the national horizontal control datum is close at hand, the COE is not expected to convert to an NAD 83-dependent State plane coordinate system in the near future. Until it can be determined with some certainty when the COE will begin publishing their survey data on an NAD 83-referenced control system, it is concluded that NOS should delay shifting the existing grid ticks to the new NAD 83 positions. However, if this conclusion is accepted, it would result in nautical charts compiled on NAD 83 projections which would contain NAD 27dependent State plane coordinate grid ticks. This could lead to confusion for any user outside of NOS. Another alternative is to delete the existing grid ticks when the chart projection is converted to NAD 83. This would require the NOS cartographers to employ other cartographic procedures in the application of COE data. This alternative is under consideration within NOS.
A. Objectives

The objective of a datum conversion plan is to identify an effective process for converting the suite of NOS nautical charts to NAD 83 in a timely and efficient manner, or to WGS 84 for the nautical charts of the Pacific territorial islands. It is considered essential that any conversion plan recommended result in minimal adverse impact on normal chart production. It is also essential that the recommended plan fully consider the contemporary budgetary and personnel resources available to NOS.

B. Plan Options

In considering the above objectives, it is concluded that NOS has several options available for implementing NAD 83 into its nautical chart program. The options available, however, are dependent upon the level of conversion to be accomplished and the desired time frame for completing the conversion.

The level of conversion can be categorized as: (1) charts requiring only a change in the datum reference note and the addition of a datum transformation note, and (2) charts requiring a change in the datum reference note, the addition of a datum transformation note, and a shift in the chart projection and/or State plane coordinate grid.

Category 1
A chart would be identified under category 1 when its required projection shift is less than the 0.2 mm plotting threshold discussed previously. A preliminary assessment of the probable datum shift required for each chart and the scale of the chart indicates that approximately 72 charts require only a revision in the datum reference note for the chart to be considered on NAD 83. A datum transformation note would be necessary also for information purposes. Because of the varying life cycle of each edition and the projected printing schedule of these charts, table 4 shows that 5 years will be required for their datum conversion .

Table 4.--"Conversion note" implementation schedule

FY	Charts
1985	22
1986	31
1987	9
1988	9
1989	1
TOTAL	72

These charts could be converted more quickly through the issuance of a Notice to Mariners or by issuing a "revised print" (RP) in lieu of a normal new edition. The issuing of a Notice to Mariners is considered a temporary solution that would be of benefit only until a new edition could be printed.

Category 2
Charts falling under category 2 (approximately 900) will require significant cartographic action before they can be considered constructed or compiled on NAD 83. Four viable options were identified for converting these charts to NAD 83. These options are as follows:

Option 1. Automated Nautical Charting System

This option would accomplish the conversion to NAD 83 using exclusively the automated nautical charting system.

Option 2. Automated and Manual Nautical Charting Systems
This option would employ a realistic blend of automated and manual cartographic procedures to convert nautical charts to NAD 83. Manual procedures would be concentrated in areas where a digital data base is not scheduled to be operational for several years; i.e., Pacific coast and Alaska.

Option 3. Hybrid Cartographic System

This option would accomplish the conversion to NAD 83 at the time of the next printing of the chart using the most efficient cartographic methods available; i.e., automated and/or manual.

Option 4. Constrained Hybrid System

This option would also accomplish the conversion to NAD 83 using both manual and automated cartographic procedures, but would accomplish the conversion within a specified time frame.

C. Discussion of the Options

The major difference between the four options presented is the number of projection revisions that would be accomplished using manual cartographic procedures. In general, the sooner the datum conversion is accomplished, the greater the number of projections or grids that will have to be revised manually. The greater the number of manual revisions required, the higher the cost and the greater the impact on the annual production of new editions.

Specific comments on each option follow:
Option 1: Automated Nautical Charting System
Option 1 would rely entirely on the automated nautical charting system to convert the existing charts to NAD 83. Manually maintained charts would have an interim transformation note placed on the next edition of the chart which would remain until the projection or grid could be shifted using the AIS. A Notice to Mariners could be issued and distributed citing interim transformation notes prior to the publication of the new edition. While the primary drawback of this option is the time required to complete the conversion, the temporary nature of this note would be an additional disadvantage. While the conversion cost and impact on chart production using the AIS are concluded to be low, the length of time to convert fully the entire suite of charts is considered excessive. If the AIS can achieve a production capability of at least 100 charts per year by FY 1989, if the AIS can perform required chart maintenance in support of annual increases in the number of new editions produced by automation, and if resources are provided consistent with these chart production and maintenance requirements, it is estimated that at least 10 years would be required to complete the NAD 83 conversion (table 5). This estimate considers also the projected data base load schedule, so that even if the AIS could produce more than 100 charts per year, the data base would constrain production to the levels indicated.

Table 5.--Option 1: Automated information system (AIS)
datum conversion schedule
FY 1986 - Convert existing data base to NAD 83
FY 1987 - 25 charts
FY 1988 - 45 charts
FY $1989-100$ charts
FY $1990-100$ charts
FY 1991 - 100 charts
FY 1992 - 100 charts
FY 1993 - 100 charts
FY 1994 - 100 charts
FY 1995 - 100 Charts
FY 1996 - 100 charts
FY 1997 - 60 charts

Option 2: Automated and Manual Nautical Charting Systems
The major emphasis under this option would still be on using the AIS to convert a majority of the charts. However, projections and grids on manually maintained charts would also be revised whenever resources could be made available. This would increase the datum conversion cost somewhat, but should have
little impact on chart production. The time required to fully implement NAD 83 would also be reduced somewhat. This option would permit the shifting of the chart projection and State plane coordinate grid using manual cartographic procedures. It assumes that required resources would be available. This option is presented as a method for a more timely datum conversion in areas where the digital data base would not be operational for several years. It is intended that this option could be used to address emergency NAD 83 chart production requirements, such as the compilation of new and reconstructed charts.

Option 3: Hybrid Cartographic System

This option would convert all charts to NAD 83 at the time the next new edition is printed. Since the vast majority of the nautical charts are manually maintained, and will be for the next few years, most of the projections and grids would be revised manually. This would result in higher costs and have a major impact on either chart production or chart completeness (e.g., if this option is chosen, only critical corrections could be accommodated on the next edition.) On the other hand, this option has the advantage of rapidly implementing NAD 83. With the present level of resources, it would be extremely difficult to expect that full conversion could be completed within 8 years. However, if resources can be provided consistent with the Resource Requirements stated in this report (Sec. III B), about 90 percent of the nautical chart suite can be converted in 4 years. The disadvantages of this option are the additional manual cartographic workload and the high cost of conversion.

Option 4: Constrained Hybrid System.
This option sets a 5-year time constraint for the full implementation of NAD 83 using hybrid manual/automation datum conversion methods. Within this framework, the datum revision would be accomplished using the AIS to the maximum (assuming "estimated" production capabilities of the system) with a realistic blend of manual cartographic conversion support. Through careful scheduling, the impact on the manual-production chart schedule would be minimized. However, it is expected that the amount of noncritical revisions applied to the charts during this period would be reduced significantly. Although this option would result in a moderate cost, and have a moderate impact on chart production, it would provide the benefit of full NAD 83 implementation in a reasonably short period of time. This option was developed to strike a "happy medium" between time of conversion and resource requirements. As such, it is the only option where artificial time restraints have been imposed and detailed scheduling has been developed. In developing the conversion schedule under Option 4, the impact of several cartographic and charting factors was collectively considered. These factors, and the special consideration or impact of each, are discussed below:
a. Location of the chart. The geographic location of the chart is important in assessing the status of the AIS in the
corresponding area. Is the area presently loaded in the digital data base? Has the ACPG established a probable date for loading data for the area? Is the area not presently considered for automated chart production in the near future? For example, digital data for the charts along the coasts of New Hampshire and Maine are scheduled for loading in 1985. Therefore, the conversion of these charts to NAD 83 would be performed by automated techniques and would be reflected in the AIS first editions published in the post-1985 time frame.
b. Scale. When the magnitude of shift to NAD 83 is known, its relationship to chart scale dictates whether only a change in the datum reference note will suffice or whether a projection shift is necessary as well.
C. Datum. Knowledge of the existing chart datum is necessary to determine whether a direct conversion to NAD 83* is possible or whether additional survey data will be required. This is a major scheduling consideration in evaluating the impact of those charts currently on orphan datums.
d. Magnitude of datum shift. Knowledge of the magnitude of shift between the existing datum and NAD 83 is necessary to determine the type of cartographic action required to convert the chart. This provides a measure of the overall cartographic workload involved; i.e., actual shift in the projection and State plane coordinate grid or simply a revision to the datum reference note, which is essential in developing an annual conversion schedule.
e. Print cycle. Knowledge of the general print cycle (table 6) is essential to the scheduling of the chart conversions. Because there is less flexibility in scheduling charts having extended print cycles, those charts having print cycles in excess of 36 months were considered on a priority basis when developing recommendations on a schedule for datum conversion.

Table 6.--Chart edition (print) cycles

Charts	Edition cycle (months)								
on issue	6	12	18	24	36	48	60	96	144
953^{+}	10	215	0	243	116	266	1	32	70

${ }^{+}$Six additional charts are printed on variable cycles when requested by the Defense Mapping Agency.

[^1]f. Conversion Method. The identification of whether a manual or automated cartographic method will be used to convert an existing chart to NAD 83 is also important in identifying the most appropriate time for accomplishing the conversion. Because of the state of flux of the automation development, it was often necessary to venture a "best guess" on the chart production capabilities in future years.

Appendix B lists the charts published by NOS with information provided relative to each of the above factors.

The conversion schedule developed under this option integrates the expanding automation capabilities, including the probable loading of the digital data base, with the remaining manual cartographic capability within the NCD. While the chart-by-chart conversion schedule is presented in appendix B, table 7 summarizes how the NAD 83 conversion will be accomplished over the next 5 years. The heading "Datum Note" refers only to those charts which do not require a projection shift. "Manual" and "Automation" indicate the mode of cartographic technique to be used in shifting or reconstructing the chart projection.

Table 7.--Option 4: Hybrid datum conversion schedule

FY	Projection Shift			Datum Note
	Manual	Automated		
1985	4	6	22	32
1986	164	22	31	217
1987	122	110	9	241
1988	72	129	9	210
1989	120	138	1	259
TOTAL	482	405	72	959

For example, in FY 1985 a total of 32 nautical charts will be converted to NAD 83. Twenty-two will be converted by revising the existing datum reference note and adding an informational datum transformation note. The remaining 10 charts will have their projections shifted, 4 by manual cartographic techniques and 6 by automation. Consult appendix B for specifics on which charts would be converted and by what cartographic action.

V. RECOMMENDATIONS

Effective and timely implementation of NAD 83 into the NOS nautical charting program will involve establishing datum conversion policy as well as developing a realistic conversion schedule. Therefore, the recommendations contained in this report have been developed to: address (A) NAD 83 Datum Conversion Policy and propose (B) NAD 83 Datum Conversion Plan.

A. NAD 83 Datum Conversion Policy

It is recommended that a datum conversion priority be established which will have the least adverse impact on the nautical charting program as a result of using preliminary values.

It is recommended that a 0.2 mm projection shift be established as the criterion for deciding whether a chart requires a new projection or simply a revision to its datum reference note.

It is recommended that NOS begin conversion of its nautical chart suite to NAD 83 using preliminary values for the new datum on charts with a controlling scale smaller than $1: 25,000$. (Final values to be available in December 1985.)

It is recommended that minimal use be made of the AIS in accomplishing the datum conversion until the digital data base can be converted using final NAD 83 values. However, once the data base is converted, it is recommended that maximum use be made of the AIS to convert existing charts, and to compile new and reconstructed charts on NAD 83.

It is recommended that the MCB review all orphan datum charts and advise NGS where datum conversion problems are anticipated; e.g., New York State Barge Canal. Datum conversion coordination meetings between NGS and MCB personnel should be scheduled to identify areas where special field survey support is required to resolve chart datum conversion problems.

It is recommended that the contemporary requirement be determined for including State plane coordinate grid ticks on the nautical charts and/or insets. If a viable requirement is identified which justifies the cost of adding the new State plane coordinate values, then the grid ticks should be added at some future time consistent with the datum conversion plans of the suppliers of charting data; i.e., COE. If it is determined that the past users of State plane coordinate grid information contained on the nautical charts no longer require this information, the grid ticks shall be removed from the charts/insets when the chart/inset projection is converted to NAD 83.

It is recommended that the AIS and associated software be modified as soon as possible to reflect that NAD 83 is based on the new Geodetic Reference System 1980 ellipsoid instead of Clarke's Reference Spheroid of 1866. This is necessary before any NAD 83 chart projections can be plotted correctly.

It is recommended that all new and reconstructed charts be compiled exclusively on NAD 83, except for charts of the Pacific territorial islands which would be compiled on WGS 84.

It is recommended that any initial conversion to NAD 83 via the issuance of a Notice to Mariners be restricted to those charts requiring only a change in the datum reference note.

It is recommended that the automated data base be systematically converted to NAD 83 to minimize the impact on the existing chart production schedule. The ACPG expects to be able to convert the data base with a minimal impact on chart production through effective use of software.

B. NAD 83 Datum Conversion Plan

Of the several options presented, Option 4 was concluded to be the most effective in accomplishing the conversion in a timely (5 years) and efficient (hybrid) manner. The proposed "constrained hybrid conversion plan" integrates the changing operational capabilities of both the manual and automated cartographic systems. It considers the contemporary resource levels, availability of NAD 83 information, and the projected scheduling of new edition charts over the next 5 years, and is viewed as a balanced and achievable datum conversion plan.

As in any ambitious undertaking with so many combinations available for accomplishing a goal, many views were offered by other NOS cartographers, and much constructive criticism received before Option 4 was selected as the most acceptable plan for all concerned, both producers and users of nautical charts. Table 7 portrays the annual number of charts to be converted during the next 5 years through either a change in the datum reference note or in combination with a shift in the chart projection. These datum conversion actions would be accomplished by both manual and automated cartographic procedures. The cost of this conversion effort is estimated to be $\$ 1,098,400$. (See appendix C for datum conversion costs.)

It is recommended that this datum conversion plan/schedule be approved and implemented immediately.

APPENDIX A

REPORT

to

THE UNITED STATES-CANADA HYDROGRAPHIC COMAISSION

 by
COMMITTEE ON HORIZONTAL DATUMS

March 1980

David H. Gray
Canadian Hydrographic Service

REPORT OF THE COMMITTEE ON HORIZONTAL DATUMS

Background

On May 14, 1979, acting upon formal recommendations of the Great Lakes Charting Advisers, the United States-Canada Hydrographic Commission (USCHC) established the ad hoc Committee on Horizontal Datums. The purpuse of this Committee was to identify and study anticipated problems expected to be encountered by the Canadian Hydrographic Service (CHS) and the National Ocean Survey (NOS) when each agency converts its charting program to a new geocentric horizontal datum. Messrs. David H. Gray of CHS and William J. Monteith of NOS were appointed as members of this Committee.

The work of the Committee began in Ottawa, Ontario, on May 16, 1979, when a meeting was convened with several representatives of both agencies to clarify Commission objectives and to identify other related and pertinent subjects for the Committee to consider. On August 2, 1979, the Committee met in Rosslyn, Virginia, to consider the problems previously identified and to discuss the course of action necessary to prepare the required report for presentation at the next scheduled Commission meeting. Most of the contact between the committee members in conducting the study and preparing this report, particularly in resolving the minor problems which arose, was by telephone.

Problems (Questions) Considered

The problems and questions considered by the Committee and the answers or recommended course of action for each are presented below:

1.Q. What is the name of the new North American Datum?

A. The name of the new datum is "North American Datum of 1983." The accepted acronym is "NAD 83." This name and acronym will hold true regardless of the date the new datum becomes effective.
2.Q. What is the expected date that NAD 83 will become effective for use by Canada and the United States in their respective surveying and mapping programs?
A. The Geodetic Survey of Canada (GSC) and the National Geodetic Survey (NGS) of NOS advise that the framework of primary horizontal control adjustments for North America has slipped by 12 to 18
months so that it is now estimated that the NAD 83 primary adjustment will be completed in late 1984. Secondary and tertiary control will be adjusted or transformed to new coordinate values soon after that date.
3.Q. Besides conversion to an earth-centered (geocentric) system, what other results will be produced by NAD 83?
A. A major reason that the NGS and GSC are desiring the NAD 83 is to eliminate errors in the existing North American Datum of 1927 (NAD 27) and to provide the surveying and mapping programs of Canada and the United States with one common horizontal datum based on a world reference ellipsoid. For example, some known problems in the NAD 27 are:

- 100 ppm scale error in the north British Columbia coast and Alaska Panhandle
- 10 meter misclosure in the west Lake Superior area
- 10 ppm scale error in the Maritime Provinces

These problems and similar ones in the lower order surveys may mean that some charts may have to be reconstructed from the original data once the lower order control has been properly adjusted to the primary control framework. Reconstruction will depend on the magnitude of the errors and must be based on a chart-by-chart analysis.

4.Q. What are the expected changes in latitude and longitude between NAD 27 and NAD 83?

A. The NGS has published preliminary changes between NAD 27 and NAD 83 in NOAA Technical Memorandum NOS NGS-16, dated April 1979. These composite latitude and longitude differences (in meters) for North America are shown in Figure 1.
5.Q. Will there be differences between charts published by the Defense Mapping Agency (on WGS 72 Datum) and charts published by NOS and CHS (on NAD 83)?
A. Ground positional differences between these two earthcentered coordinate systems will be inconsequential for both the hydrographer and the mariner since it is estimated that the maximum difference will be about 5 meters, with the average difference being less than a

Figure 1
meter. The Committee concludes that the difference between these two datums will not be observable when charts compiled on each datum are visually compared.
6.Q. What is the horizontal datum of the present charts?
A. The majority of the charts produced currently by CHS and NOS are on NAD 27, others on a variety of horizontal or refererice datums, such as:

```
01d Hawaiian Datum
North American Datum of 1902 (U.S. Standard Datum)
Various Astronomic Datums
Uncontrolled Reference Datums
```

For the 977 charts currently published by the NOS, the following datums are used:

Datums	Charts	\therefore
North American Datum of 1927	844	86.4
North American Datum of 1902 (Great Lakes)	50	5.0
0ld Hawaiian Datum	36	3.7
Puerto Rico Datum	24	2.5
Local Astronomic Datums	21	2.2
Guam 1963 Datum	2	0.2
	977	100.0

Datums used by the CHS on charts currently published are:
North American Datum of 1927
North American Datum of 1902 (originally U.S. Standard Datum)
Local Astronomic Datums
(Chart distribution on these datums is not available)

7.Q. When should CHS and NOS publish charts on NAD 83?

A. Depending on the work load priority comprising each agencies' chart production schedule, the decision "not to convert to NAD 83" was recognized as a viable option for a limited number of charts currently produced. However, the Committee considered the relatively small number of charts which might fall into such a category and answered
this question on the assumption that CHS and NOS would ultimately convert all of their charts to NAD 83. The Committee agreed that conversion to NAD 83 should not begin until the final datum computations and adjustments have been completed and reliable positions are available for converting all existing chart data to the new datum. Unless some unforeseen reasons occur beforehand, the Committee recommends that production of charts on NAD 83 should be scheduled to begin in January 1985, or as soon thereafter as the data will permit.

8.Q. How should a chart be converted to NAD 83 ?

A. The Committee assumed that both manual and automated cartographic techniques would be available to each agency to accomplish this datum conversion. It was also decided that the cartographic method selected would be dependent upon the magnitude of the difference between NAD 83 and the various existing chart datums, the scale of the chart, and an evaluation of the basic survey data from which the chart was compiled. Whether performed by manual or automated techniques, the procedures expected to be used are:

- conversion of grid or projection points to NAD 83 using $\Delta X, \Delta Y$, and ΔZ of nearby (or charted) geodetic control,
- recompilation of survey data used for compiling the chart including offshore hydrography acquired using hyperbolic or range-range survey positioning techniques,
- survey of selected charted features to obtain NAD 83 coordinates when the existing chart datum is in question.

The Committee recommends that each agency selects the best method for conversion to NAD 83 based on a chart-by-chart analysis of all factors.
9.Q. How will existing digitized data be converted to NAD 83?
A. The conversion method selected will be dependent on the source information. Since the digitized data are often used at a scale larger than the conventional chart manuscript, the Committee recommends that the accuracy standards for converting existing digitized data to NAD 83 be established to assure that a greater accuracy is achieved than is necessary for charting. NOS expects to use an existing computer program to apply a least squares adjustment to convert its existing digital data base to NAD 83 on a chart-by-chart basis. This program.
requires that the position of the four neatline corners of each chart be known on NAD 83 and will be solvable using the procedures cited in the discussion of Question 8. There is the potential problem that some data might be transformed twice and safeguards should be established to eliminate this error.
10.Q. How long will it take to complete the conversion of all NOS and CHS charts to NAD 83?
A. (NOS) The Committee recognized that a reasonable time required for each agency to accomplish full datum conversion would depend on several factors with the most important being whether each agency (beginning in 1985) would have the cartographic capability to compile the changes at a rate to meet the projected printing cycle for each chart. The Committee assumed this capability would exist with nowdeveloping methods and, therefore, concentrated its efforts on estimating the reasonable time that would be required to produce new chart editions on NAD 83. The NOS issues about 500 new editions per year.

The NOS has eight distinct printing cycles for charts. These cycles and the number of charts affected are listed below:

```
Print Cycle
    mos.
    12 mos.
    18 mos.
    24 mos.
    36 mos.
    48 mos.
    96 mos.
    144 mos.
        12.(Includes 1 mineral lease chart)
    977
Theoretically, the 12-year print cycle charts would extend the conversion period to 1996 if datum conversion were begun in 1985 and if 1984 were the latest edition of these 12 -year charts. However, a review of the NOS long-range chart production schedule indicated that both the 8- and 12 -year print cycle charts could be converted to NAD 83 by the end of 1991 (see below).
```

	Charts Printed	
Year	8-year Edition	12-year Edition
1985	12	0
1986	5	4
1987	4	18
1988	3^{*}	20
1989	4^{*}	10
1990	1	10
1991	-3	-8
	32	70
	* Special Use Charts for U.S. Navy	

A. (CHS) There are approximately 1,000 CHS navigational charts in stock at any one time. The number changes slightly as new charts are published and old ones are withdrawn. In any one year approximately 10 new charts, 95 new editions, and 98 corrected reprints are published. The distinction between new edition and corrected reprint is that the latter differs from the previous printing by application of information published in Notices to Mariners (NM) and hence the previous printing is not cancelled. Corrected reprints are issued to replace stock of a chart when there are no new surveys or to reduce the amount of hand corrections (the application of items published in the $N M$) that are necessary for a chart. At first glance it might appear that with almost 200 charts coming off the presses each year, that it would take only 5 years to go through the 1,000 navigational charts. Unfortunately, some charts are not printed as frequently as that and some much more frequently. By inspection of the CHS chart indexes, it takes about 7 1/2 years to get through approximately half of the charts, 15 years for three-quarters of the charts, and 30 years for 99 percent of the charts.

Over half of the charts sold are newer than 7 1/2 years old since they are in greater demand, whereas there is little demand for charts that are printed once every 30 years. Nevertheless it is obvious that CHS cannot match the NOS prediction of conversion of all charts to NAD 83 in 7 years. It will take a concerted effort by CHS to reduce the conversion period even to 15 years.

11.Q. What would happen to existing chart stock?

A. Until all charts are converted to NAD 83, the Committee recommends that a NM statement should be published annually which would identify each chart not on NAD 83 at that time and the respective $\Delta \varphi$ and $\Delta \lambda$ conversion values between the existing chart projection and NAD 83.

As conversion to NAD 83 occurs through the printing of new editions in conformance with prior established edition cycles, existing chart stock will continue to be treated as obsolete and cancelled, as is the present practice.
12.Q. Should CHS and NOS recognize that people use obsolete editions of charts and, therefore, recommend the publishing of NM information on individual items in the new and old chart datum for an interim period?
A. No: The publishing of information on more than one datum would be too confusing. Canadian and United States law require the use of the latest editions of charts and it is believed that any action to promote or support the use of obsolete charts would be inconsistent with the legal positions of both countries.
13.Q. How can a chart not on NAD 83 be referenced to, or used with, NAD 33 information?
A. The Committee recommends as an interim measure the addition of a "transformation" note on the chart which will inform the user of the amount of correction needed to shift the chart projection to NAD 83.

14.Q. How will NM information be published?

A. The Committee considered two basic procedures for publishing NM information. The first would require information be published consistent with the datum of the chart affected. Multiple charts affected by a single NM item could mean publishing that information on more than one datum, especially in the early period of transitioning the charts to NAD 83. It would be expected that the size of the NM would remain large until the number of charts not on NAD 83 is significantly reduced. This procedure will also require developing a fail-safe data checking system to assure a high credibility level for the data published. The CHS presently handles NM information affecting charts of different datums and scales in this way.

The Committee also considered the impact of publishing (after January 1985) NM information exclusively on NAD 83, regardless of the datum of the affected chart(s). This would also present a formidable task. Included in the NM would be a special note advising
the user on how to transform the NM information to the datum of each chart affected. This note would be opposite in content to the note proposed in the answer to question 13 above. It is believed the use of a note could reduce significantly the size of each NM and still enable the user to utilize this information correctly. The following is an example of a note in a NM pertaining to a NOS chart of Cape Hatteras:

PLOTTING ADJUSTMENT

Geographic positions of data given on North American Datum 1983 (NAD 83) may be plotted on this chart by applying the following corrections:

Latitude: $+0.48^{\prime \prime}$, or +12.4 meters, or +13.5 yards
Longitude: -1.04 ", or -32.0 meters, or -34.0 yards
The World Geodetic System 1972 (WGS 72) datum is considered equivalent to NAD 83 for this chart.

The Committee believes this question can be answered following future discussions between CHS, Canadian Ministry of Transport, U.S. Coast Guard, Defense Mapping Agency Hydrographic/Topographic Center, and the NOS. These discussions would be scheduled in a period 3 to 6 months in advance of the implementation of NAD 83 into the respective charting programs of both countries. This question should be made a point of future discussions by the Commission as well.
15.Q. Should charts be drawn with a double border, one on NAD 83 and the other representing the existing chart datum?
A. No! Cartographically, it would mean drawing the neatline (border and projection ticks) twice, initially to show the old and new datum projections, and later to show only the NAD 83 projection. In the first case, it is believed the users would be confused by the two projections displayed, particularly in the adaptation of NM information. Until the charts are compiled on NAD 83, it is recommended that an interim note and example be added to the existing chart to instruct the user how to transfer from existing chart datum to NAD 83, as recommended in the answer to question 13.
16.Q. Will chart borders and lattices have to be redrawn?
A. Analysis to date indicates there should be no visible difference in charted area between chart neatlines (borders) drawn based on ellipsoid parameters defining NAD 83 and any other datum
previously used, such as NAD 27 (Clarke's Reference Spheroid of 1866). The neatlines of a chart define the "window," or the area charted, and regardless of the datum used in compiling the chart, the window remains the same even though the chart projection may be shifted. Where the chart projection intersects the neatline, new subdivisions will be required to reflect this projection shift to NAD 83.

Electronic positioning lattices, however, will probably have to be redrawn since both the ellipsoid parameters and the geographic coordinates of the electronic positioning system transmitters have been changed. These changes will produce non-uniform differences between new and old data used to generate these lattices.

Other Considerations and Summary

Although predicted shifts between NAD 27 and NAD 83 appear to be systematic and predictable, the Committee has concluded that there are many charts compiled on older datums and based on older surveys where a predicted shift in coordinates is not feasible. An individual analysis of each chart will have to be done to resolve the effect of shift in datums.

Beginning in early 1985, or as soon as final coordinates for charting control are available from NGS and GSC, the Committee recommends that
/chart projections (grids) be shifted to the NAD 83 at the New Edition stage of construction. It is further recommended that a list of chart projection shifts (latitude and longitude) should be published (annually) in NM for the mariner who wishes to change datums prior to an edition of the chart being published on NAD 83.

The Committee has not determined whether NM, Light Lists, Sailing Directions (Pilots) and other publications quoting geographic positions would use the projection datum of the current edition of the chart (if not NAD 83) or would use NAD 83 exclusively. Further study and coordination in this area is required prior to 1985. It is recommended the Commission identify this for Charting Advisers action at a later date.

Electronic positioning system lattices will have to be redrawn on the new datum. Some offshore surveys done in hyperbolic and range-range mode will require replotting because of the non-uniformity of the shifts in transmitter positions and because of new ellipsoid parameters. It is expected that CHS and NOS will not be able to handle this replotting manually, but will require automated cartographic techniques to effectively and efficiently accomplish transformation to the new NAD 83.

APPENDIX B

NAD 83 CONVERSION FACTORS
AND

PROPOSED IMPLEMENTATION SCHEDULE

FOR

NOS NAUTICAL CHARTS

Abbreviations are used extensively throughout Appendix B. The abbreviations, keyed to the major column headings, are defined below.

Area

AL = Alabama	KR $=$ Kingman Reef .	$\mathrm{NY}=\mathrm{Ners}$ York
AK $=$ Alaska	LA $=$ Louisiana	OR = Oregon
BC $=$ New York State Barge Canal	LC = Lake Champlain	$\mathrm{PA}=$ Pernsylvania
CA = California	LE = Lake Erie	PM $=$ Palnyra Atoll
CM = Canoe Maps (Mirimesota-	LH = Lake Huron	PR = Puerto Rico
Ontario Border Lakes)	LM = Lake Michigan	RI $=$ Rhode Island
CR = Columbla River	LO = Lake Ontario	RL = Rainy Lake
CT $=$ Comecticut	LSC = Lake St. Clair	SC = South Carolina
DE = Delaware	LS = Lake Superior	SCR = St. Clait River
$\mathrm{DR}=$ Detroit River	LW = Lake of the hoods	SI = Samoa Islands
FL = Florida	MA $=$ Massachusetts	SLR = St. Lawrence River
CA $=$ Ceorgia	MD $=$ Maryland	SMR = St. Marys River
GAK = Gulf of Alaska	ME = Maine	TX $=$ Texes
$G M=$ Guan	MS $=$ Mississippi	$\mathrm{VA}=$ Virginia
HI $=$ Hawaitan Islands	NC $=$ North Carolina	VI $=$ Virgin Islands
$\mathrm{I}=$ Jarvis, Baker \& Howlend	$\mathrm{NH}=$ New Haupshire	WA = Washington
Islands	NI = Navassa Island	W CST = West Coast
ID = Idaho	NJ = New Jersey	WI = Wake Island
$\mathrm{JA}=$ Johnston Atoll	NV $=$ Nevada	

Chart

I International Chart
L Electronic Latticed Chart;
e.g., LORAN, CMECA

SC Small Craft Chart
RC Recreational Chart
SPC (State Plane Coordinates)

+ On Charts Only
- On Insets Only
* On Chart and Inset(s)

Print Cycle

- "Official Use Chart" (Printed When Requested By DMA)

Publish

- Probable Year For Printing Neiv Edition
x Year For Converting Chart To NAD 83

Datum

A Local Astronomic Datum

* Charts Are On NAD 27 Unless Otherwise Noted

G Guan 1963 Datum
L Local Datum
None Chart Does Not Contain A Reference Datum
OHD Old Hawaitan Datum
PR Puerto Rico Datum
Pre27 Preliminary NAD 27
Pre83 Preliminary NAD 83
UNK Datum of Chart Is Unknown
02 U.S. Standard Datum or 1902 Datum

Compile

x Most Likely Method

- To Be Done By Automation If System Has Capability

Area	Chart	$\begin{gathered} \text { Scale } \\ 1: K \end{gathered}$	$\begin{gathered} \text { Datum } \\ \hline \end{gathered}$	Corr. Req'd			S	Action		Print Cycle (MO.)	Compile		Publish (NAD 83)				
				LAT	LON	$\begin{aligned} & \text { Max. } \\ & \text { Shdft } \end{aligned}$	P	Note	Proj		Man	Auto	85	86	87	88	89
	11432SC	50		40	-18	44			x	24		x				x	
	114335C	50		41	-17	44			x	24		\mathbf{x}		.		x	
	11434L	180		42	-14	44			x	12		-	-	.	-	.	\mathbf{x}
	11438	30/10		40	-11	41			x	48		x			x		
	114392	80		42	-13	44			x	24		x	-		-		x
	11441	30		42	-14	44			x	12		x	-	-		-	\mathbf{x}
	11442	80		42	-15	45			x	12		x	-	-	x	-	.
	11445	40		42	-15	45	*		x	12		x	-	-	-	-	x
	11447	10		42	-14	44			x	12		x	-	-	-	-	x
	11448	40		42	-16	45			x	24		x	.		-		x
	11449	40		42	-18	46			x	24		x		-		x	
	114502	180		44	-18	48			x	12	x		-	x	-	-	-
	114515C	80		42	-19	46			x	12		x	.	-	.	.	x
	11452	80		42	-18	46			x	24		x	-		-		\mathbf{x}
SE Atlantic	114600	467		34	-21	40		x		12	x		-	x	-	-	-
-FL	114624	80		41	-20	46			x	24		x		-		x	
	11463	40		42	-20	47			x	24		x		-		x	
	11465	40		40	-20	45			x	12		\mathbf{x}	-		x	.	-
	11466 L	80/10		36	-20	41			x	12		x	-		-	-	x
	11467SC	40		36	-21	42	*		x	12		x	-	-	-	-	x
	11468	10		40	-20	45	+		x	12		x	-	-	-	-	\mathbf{x}
	11470	10		39	-20	44	+		x	12		x	-	.	x	-	.
	11472SC	40/20		32	-21	38	*		x	12		x	-	x	-	-	
	11474L	80		35	-21	41			x	48		x	-				x
	11475	10		32	-20	38	+		x	24		x	-		x		.
	114762	80		29	-20	35			x	24		x		x		-	
	11477	60		29	-20	35	+		x	-		-	-			+	
	11478	10		28	-19	34	*		x	24		-	-		x		-
	11480L	450		22	-19	29		\mathbf{x}		12	\mathbf{x}		-	x	-	-	.
	11484 L	80		28	-19	34			x	24		-	-		-		x
	11485SC	40		26	-18	32	*		x	12		-	-	-	-	-	x
	11486L	80		24	-18	30			\mathbf{x}	48		-	-			x	
	11488L	80		22	-16	27			\mathbf{x}	24		-		-		x	
	114895 C	40 40		22	-16	27	*		x	12	x		-	x	-	.	-
	11490	40/10		22	-17	28	+		x	48		-		-	x		
	114915C	20		22	-15	27	*		x	12	x		-	x	-	-	-
	11492	40		23	-15	27	*		x	24		-		-		x	
	11495	40		24	-15	28	*		x	24		-			x		
-CA	115021	80			-16		$+$		x			-		-		x	
	11503	20		21	-16	26	+		x	24		-	-		-	x	x
	11506	40		20	-16	26	$+$		x	24		-	-		-		x
	11507sc	40		18	-17	25			x	12		-	.	-	x	-	.
	11508	40		19	-17	26	+		\mathbf{x}	48		-				x	
	115092	80		17	-17	24			x	24		-	-		-		x
	11510	40		18	-17	25	+		x	24		-	-		x		\cdot
	11511	40		17	-17	24			x	24		-	-		-		x
	11512	40		17	-18	25	+		x	12		-	-	-	-	-	x
-SC	11513L	80		16	-17	23	*		${ }^{x}$	24	x			x		-	
	115145 C	20		16	-15	22	*		x	12		-	-	-	-	-	x
	11515SC	20		14	-15	21	*		\mathbf{x}	24		-		-		x	
	11516	40		17	-18	25	+		\mathbf{x}	24		x	-		x		

Area	Chart	$\begin{gathered} \text { Scale } \\ \text { 1:K } \end{gathered}$	$\begin{gathered} \text { Datum } \\ * \end{gathered}$	Corr. Req'd			S	Action		Print Cycle (NO.)	Compile		Publish (NAD 83)				
				LAT	LON	$\begin{aligned} & \text { Max. } \\ & \text { Shift } \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{C} \end{aligned}$	Note	Proj		Man	Auto	85	86	87	88	89
	12241	20		11	-30	32			x	24	x			x		-	
	12243	40		10	-29	31			x	24		-		.		x	
	12245	20		11	-30	32	+		x	12		-	-	.	x	.	
	12248	40/20		11	-30	32	*		x	12	x		-	x	.	-	-
	12251	20		10	-29	31	*		\mathbf{x}	24		-		-		\mathbf{x}	
	12253	20		11	-30	32	+		x	12		-	-	-	-	.	x
	12254	20		11	-30	32	+		x	12		-	-	-	-	.	x
	12255	5		11	-30	32			x	-	x		+				
	12256	20		11	-30	32			x	12		-	-	-	x	-	
-MD	12260L	197		8	-29	30		x		12	x		-	x	.	.	-
	12261	40		8	-30	31	*		x	12		-	-	.	-	-	x
	12263L	80		8	-30	31			\mathbf{x}	6	x		-	x	.	-	-
	12264	40		8	-29	30	*		\mathbf{x}	24		-	-		.		x
	12266	40/10		8	-30	31			x	24	x			x		-	
	12268	40		8	-30	31	*		x	48	x			x			
	12270	40/20		8	-29	30			\mathbf{x}	24		-	-		x		-
	12272	40/10		8	-30	31	*		x	12		-	-	-	x	-	
	12273L	80		8	-30	31	+		x	6		-	-	-	.	-	x
	12274	40		8	-30	31			x	12		-	.	-	.	-	\mathbf{x}
	12277	20		8	-30	31	*		x	12		-	-	.	x	-	.
	12278	40/10		8	-30	31	*		\mathbf{x}	6	x		-	x	.	-	-
	12281	15		8	-29	30	+		x	12		-	-	-	x	-	-
	12282	25		8	-29	30	+		x	12	x		.	x		-	-
	12283	10		8	-29	30	+		x	24		-	.		\mathbf{x}		
	12284	10		8	-29	30	+		x	24		-	-		-		x
-VA	122855 C	80/20		8	-29	30			x	12		-	-	-	\mathbf{x}	-	-
	12286	40		8	-28	29	+		x	24	x			x		-	
	12287	20		8	-29	30	+		x	24		-		-		\mathbf{x}	
	12288	40		9	-27	28	+		x	24	x			x		-	
	12289	40/20		8	-27	28	*		\mathbf{x}	12		-	-	-	x	-	-
	123004	400		7	-39	40		x		12	x		-	x	-	-	
-DE	12304 L	80		8	-32	33	+		x	12		-	-	-	-	-	x
	12311	40		8	-31	32			x	12	x		-	x	-	-	
-PA	12312	40		8	-31	32			\mathbf{x}	12	x		-	x	-	-	-
	12313	15		7	-31	32			x	12	x		-	-	x		-
	12314	20		7	-31	32			x	24	x			-	x	-	
- NJ	12316SC	[40		7	-33	34	*		x	12		-	-	-	-	-	x
	12317	10		8	-32	33	+		x	24	x			-	x	-	
	12318L	80/20		8	-33	34	-		x	12		-	-	-	-	-	x
	12323L	80		7	-34	35			x	24		-	-		x		-
	12324SC	c 40		7	-34	35	*		x	12		-	-	-	-		x
NE Atlantic	12326L	80		7	-34	35			x	12	x		-	x	-	-	
- NY	12327	10		7	-34	35	+		x	6	\mathbf{x}		-	x	-	-	
- NU	12330	10		7	-34	35			x	12	x		-	x	-	-	
	12331	15		7	-34	35			x	24		-	-		-		x
	12332	20		7	-34	35	+		x	48	x				x		
	12333	15		7	-34	35	+		x	24	x			x			
-NY	12334	10		7	-34	35	+		x	12	x		-	-	x	-	
	12335	10		7	-34	35	+		x	12		-	-	-	.	-	x
-NU	12337	20		7	-34	35	*		x	48		-				x	
--NY	$1 \begin{aligned} & 12338 \\ & 12339\end{aligned}$	5		7	-34 -34	35 35	+		x	48 12	\mathbf{x}	-	.	x		x	-

Area	Chart	$\begin{gathered} \text { Scale } \\ \hline 1: K \\ \hline \end{gathered}$	$\begin{gathered} \text { Datum } \\ \hline \end{gathered}$	Corr. Reg'd			S	Action		Print Cycle (Na.)	Complle		Publish (VAD 83)				
				LAT	LIN	$\begin{gathered} \text { Max. } \\ \text { Shift } \end{gathered}$	$\begin{array}{\|l\|} \mathrm{p} \\ \mathrm{C} \\ \hline \end{array}$	Note	Proj		Man	Auto	85	86	87	88	89
	16012	1126		-156	151	217		x		48	x			x			
-CAK	16013L	969		-72	123	143			x	24	x				x		
	16016L	969		-41	102	110		x		24	x		x		.		
Artic-AK	16041	51		-22	115	117			x	144	\mathbf{x}		\mathbf{x}				
	16042	51		-24	116	118			x	144	x			x			
	16043	50/20		-26	117	120			x	144	x			\mathbf{x}			
	16044	50		-29	118	122			x	144	\mathbf{x}						x
	16045	50		-32	119	123			x	144	x						x
	16046	50		-34	119	124			x	144	x			x			
	16061	50		-36	120	125			x	144	\mathbf{x}						x
	16062	49		-38	120	126			x	144	\mathbf{x}						\mathbf{x}
	16063	49		-40	121	127			x	144	\mathbf{x}						\mathbf{x}
	16064	49		-44	122	130			x	144	\mathbf{x}						\mathbf{x}
	16065	49		-45	122	130			x	144	\mathbf{x}						x
	16066	48		-48	123	132			x	144	x						x
	16067	48		-50	123	133			x	144	\mathbf{x}						\mathbf{x}
	16081	48		-52	124	134			x	144	\mathbf{x}						x
	16082	47		-54	124	135			x	144	x					x	
	16083	50		-56	125	137			\mathbf{x}	144	x			x			
	16084	50		-58	125	138			x	144	x				\mathbf{x}		
	16085	50		-60	126	140			x	144	\mathbf{x}				\mathbf{x}		
	16086	50		-61	126	140			x	144	x					x	
	16087	50		-63	127	142			x	144	x				\mathbf{x}		
	16088	50		-66	127	143			\mathbf{x}	144	x				\mathbf{x}		
	16101	50		-68	128	145			x	144	x					x	
	16102	50		-70	128	146			x	144	x				x		
	16103	50		-72	129	148			x	144	\mathbf{x}				x		
	16104	50		-74	129	149			x	144	\mathbf{x}				x		
	16121	50		-74	130	150			x	144	x				x		
	16122	50		-75	130	150			x	144	x				x		
	16123	50		-76	130	151			x	144	x				x		
	16124	50		-76	130	151			x	144	x				x		
Pacific-AK	16200L	400		-85	130	155			\mathbf{x}	144	x						x
	16204L	100		-85	131	156			x	144	\mathbf{x}					x	
	16206	20/2		-85	130	155			x	144	\mathbf{x}						x
	16240.	300/40		-86	129	155			x	24	\mathbf{x}			x		-	
	16300L	200/80		-93	130	160			x	96	x			-	x		
	16322	100/10		-88	131	158			x	96	x						\mathbf{x}
	16323L	100		-86	131	157			x	96	\mathbf{x}						\mathbf{x}
	16343L	80		-91	133	161			x	96	\mathbf{x}			-		\mathbf{x}	
	16363L	80		-93	135	164			x	96	x		-				x
	16380L	200		-117	138	181			x	48	\mathbf{x}					x	
	16381	50		-117	138	181			x	144	x						x
	16382	50		-117	138	181			x	144	\mathbf{x}						\mathbf{x}
	164201	300		-145	136	199			x	48	\mathbf{x}			x			
	16421L	160		-145	136	199			x	144	\mathbf{x}						\mathbf{x}
	16430	40		-144	134	197			x	144	x						x
	16431	20		-144	135	197			x	144	x					x	
	16432	25		-144	135	197			x	144	x				x		
	16433	20/5		-144	135	197			x	144	x						x
	16434	40		-145	136	199			x	144	\mathbf{x}						x
	16435	20		-146	137	200			x								

Area	Chart	$\left\lvert\, \begin{gathered} \text { Scale } \\ 1: R \end{gathered}\right.$	$\begin{gathered} \text { Datum } \\ * \end{gathered}$	Corr. Req'd			S	Action		Print Cycle (Ma.)	Comptile		Publish (NAD 83)				
				LAT	LON	$\begin{aligned} & \text { Max. } \\ & \text { Shift } \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{C} \end{aligned}$	Note	Proj		Mm	Auto	85	86	87	88	89
	16436	20/5		-146	137	200			x	144	x						x
	16440L	300		-149	145	208			\mathbf{x}	48	\mathbf{x}				\mathbf{x}		
	16441 L	80		-149	145	208			x	144	\mathbf{x}					\mathbf{x}	
	16442	20		-149	145	208			\mathbf{x}	144	\mathbf{x}						\mathbf{x}
	16446	10		-151	149	212			\mathbf{x}	144	x				\mathbf{x}		
	16460 L	300		-152	155	217			\mathbf{x}	48	\mathbf{x}					x	
	16462	50		-153	154	217			\mathbf{x}	144	x				x		
	16463	50		-152	155	217			x	144	x						x
	164711	120/20		-150	158	218			\mathbf{x}	48	x		-	\mathbf{x}			
	16474	12/6		-150	158	218			x	144	\mathbf{x}			x			
	16475	30		-150	158	218			\mathbf{x}	144	\mathbf{x}						\mathbf{x}
	16476	10		-150	158	218			\mathbf{x}	144	x						\mathbf{x}
	16477	30		-150	158	218			\mathbf{x}	144	\mathbf{x}					\mathbf{x}	
	16478	30/10		-150	158	218			\mathbf{x}	144	x						x
	16480 L	300/20		-140	152	207			x	48	x			x			
	16484	30		-148	160	218			\mathbf{x}	144	x				x		
	16486	40		-146	160	217			x	144	x						\mathbf{x}
	16487	40/10		-144	158	214			x	144	x						\mathbf{x}
	16490	20		-140	152	207			\mathbf{x}	144	x						\mathbf{x}
	165002	300		-114	140	181			\mathbf{x}	48	\mathbf{x}				\mathbf{x}		
	16501L	80		-117	142	184			\mathbf{x}	96	\mathbf{x}						x
	16511	40/10		-114	140	181			\mathbf{x}	96	\mathbf{x}			x			
	16513	40		-111	140	179			\mathbf{x}	96	\mathbf{x}			-	x		
	16514	40		-110	140	178			\mathbf{x}	96	\mathbf{x}				x		
	16515	40		-110	140	178			\times	96	\mathbf{x}				x		
	16516	10		-110	140	178			\mathbf{x}	96	\mathbf{x}			\mathbf{x}			
	16517	40		-108	137	176			\mathbf{x}	96	\mathbf{x}				x		
	16518	40		-108	137	176			\mathbf{x}	96	\mathbf{x}				x		
	16520L	300		-101	137	170			\mathbf{x}	96	\mathbf{x}			\mathbf{x}			
	16521	40		-106	139	175			\mathbf{x}	96	\mathbf{x}			x			
	16522	40		-105	139	174			x	96	x			x			
	16528	40		-106	139	175			\mathbf{x}	96	\mathbf{x}						x
	16529	10		-106	139	175			\mathbf{x}	96	\mathbf{x}						X
	16530	10		-106	139	175			\mathbf{x}	96	x						x
	16531 L	80		-104	138	173			\mathbf{x}	96	x				\mathbf{x}		
	16532	20		-104	138	173			\mathbf{x}	96	x			-	x		
	16535 L	80		-99	137	169			\mathbf{x}	96	\mathbf{x}		-				\mathbf{x}
	165401	300/15		-94	135	165			\mathbf{x}	48	x		-				x
	16547	81/20		-98	136	168			\mathbf{x}	96	\mathbf{x}			x			
	16549L	80/5		-98	136	168	-		x	96	x						x
	16551L	80		-95	135	165			x	96	x			x	-		
	165531	80/20		-94	135	165			x	48	x				x		
	16556I	80/20		-92	134	163			x	48	\mathbf{x}				x		
	1656L	77/40		-87	133	159			\mathbf{x}	48	\mathbf{x}			x	x		
	16568L	106		-85	133	158			\mathbf{x}	96	x				x		
	16570	50		-83	132	156			\mathbf{x}	48	x		-				x
	16580.	350/53		-81	130	153			\mathbf{x}	48	\mathbf{x}		-				x
	16590L	81		-81	130	153			\mathbf{x}	48	x				x		
	16591	20		-81	130	153			x	48	x		-				x
	16592]	80/20		-80	130	153			\mathbf{x}	48	\mathbf{x}		-				\mathbf{x}
	165931.	80		-79	129	151			x	48	x				x		
	16594	78/20		-79	129	151			\mathbf{x}	48	\mathbf{x}		.				x

				Corr. Reg'd			S	Action		Print Cycle (Mo.)	Complle		Publish (NAD 83)				
Area	Chart	$\begin{array}{\|c} \text { Scale } \\ 1: K \\ \hline \end{array}$	$\begin{gathered} \text { Datum } \\ * \\ \hline \end{gathered}$	LAT	LaN	Max. Shift	P	Note	Proj		Man	Auto	85	86	87	88	89
	16595	20/10		-79	129	151			x	48	x				x		
	1659	10		-79	129	151			x	48	x			.	\mathbf{x}		
	16597L	80		-80	130	153			x	48	x			x			
	16598L	80		-81	130	153			x	48	x		-				
	16599	20		-81	130	153			x	96	x						x
	16601L	80		-81	130	153			x	48	x			x			
	16603	30		-81	130	153			x	48	x				x		
	16604L	78		-78	127	149			x	48	x				\mathbf{x}		
	16605	20		-79	128	150			x	48	\mathbf{x}				x		
	16606L	77		-78	127	149			x	48	\mathbf{x}		-				x
	16608L	80		-79	129	151			x	48	\mathbf{x}				x		
	16640L	200/5		-75	126	147			x	24	x		-		-		x
	16645	82/10		-73	125	145	-		x	48	x				x		
	16646	20		-73	125	145			x	48	\mathbf{x}		-				x
	16648L	100/50		-78	127	149			x	24	x		-		x		
	16660L	194/40		-70	123	142	-		x	12	x		-	x	-		
	16662L	100/50		-72	123	143			x	24	\mathbf{x}		-		\mathbf{x}		
	16664	40/15		-78	122	145			x	24	\mathbf{x}		-		x		
	16680L	200		-70	122	141			x	48	\mathbf{x}		-				x
	16681L	83		-70	123	142			x	48	x		-				x
	16682L	81/10		-69	121	139			x	48	\mathbf{x}			\mathbf{x}			
	16683L	81		-65	120	136			x	48	\mathbf{x}		-				x
	16700L	200		-62	117	132			x	48	\mathbf{x}				x		
	16701	81		-64	118	134			x	48	\mathbf{x}					x	
	16702	40		-65	119	136			x	48	x		-				x
	16704	20		-65	118	135			x	48	\mathbf{x}		-				x
	16705L	80		-65	118	135			x	48	\mathbf{x}			x			
	16706	20/10		-66	119	136			x	48	\mathbf{x}					x	
	16707	40/10		-61	116	131			x	12	x		-	x	-	-	
	16708L	79/40		-62	116	132			x	24	\mathbf{x}			x			
	16709L	80		-60	115	130			x	48	x		-				x
	16710	30		-60	115	130			x	48	\mathbf{x}				x		
	16723L	100		-58	111	125			x	48	x		-				\mathbf{x}
	16741	40		-42	106	114			x	48	x		-		x		.
	16760L	300		-41	103	111			x	48	x		-				x
	16761L	80/10		-40	102	110			x	48	\mathbf{x}					x	
	16762	20/10		-40	102	110			\times	48	x			-	x		
	17300L	209		-37	100	107			x	24	x			x		-	
	17301	40		-40	101	109			x	96	x				x		
	17302	80/10		-40	101	109			x	48	x		-				x
	17303	40/10		-40	101	109			x	48	x		-		x		-
	17313	40		-36	99	105			x	48	\mathbf{x}		-				x
	17314	20		-37	99	106			x	96	\mathbf{x}						x
	17315	40/10		-37	100	107			x	24	x		-		x		
	17316	80/20		-37	100	107			x	48	\mathbf{x}			-	x		
	17317	80/10		-37	100	107			x	24	x		-		x		
	17318	80/10		-38	100	107			x	24	x		-		x		
	17320L	217		-42	102	110			x	24	x		-		.		\mathbf{x}
	17321	40		-40	101	109			x	48	\mathbf{x}			x			
	17322	40/10		-40	101	109			x	48	x		-				x
	17323	40/20		-41	101	109			x	48	x			-	x		
	17324	40/10		-41	101	109			x		x					x	

				Corr. Reg'd			S	Action		Print Cycle $\left.(\mathrm{MO})^{2}\right)$	Comprle		Publish (NAD 83)				
Area	Chart	Scale 1:K	$\begin{gathered} \text { Datum } \\ * \\ \hline \end{gathered}$	LAT	LON	$\begin{aligned} & \text { Max. } \\ & \text { Shift } \end{aligned}$	$\begin{aligned} & \mathbf{P} \\ & \mathbf{C} \end{aligned}$	Note	Proj		Man	Auto	85	86	87	88	89
	17325	40		-41	102	110			x	48	X				X		
	17326	40/5		-42	102	110			x	48	x		-				x
	17327	10/5		-42	103	111			\mathbf{x}	24	\mathbf{x}		-		x		-
	17328	40		-43	103	112			x	48	x		-				x
	17330	20		-44	104	113			x	48	\mathbf{x}		-				\mathbf{x}
	17331	10		-43	104	113			\mathbf{x}	48	\mathbf{x}		-				\mathbf{x}
	17333	20		-42	103	111			\mathbf{x}	48	\mathbf{x}		-				\mathbf{x}
	17335	20		-42	103	111			x	48	\mathbf{x}		-				\mathbf{x}
	17336	20		-42	103	111			x	48	x		-				\mathbf{x}
	17337	40/20		-41	102	110			x	48	x		-				\mathbf{x}
	17338	40		-41	102	110			\mathbf{x}	24	\mathbf{x}		\mathbf{x}		-		-
	17339	30/10		-41	102	110			x	48	x				x		
	17341	20		-41	103	111			\mathbf{x}	48	\mathbf{x}			x			
	17360	217/20		-40	100	108			\mathbf{x}	12	\mathbf{x}		-	x	-		-
	17362	40		-40	100	108			\mathbf{x}	48	x		.				x
	17363	40		-39	100	107			\mathbf{x}	96	x						\mathbf{x}
	17365	20		-39	100	107			X	96	x						x
	17367	40		-39	100	107			\mathbf{x}	48	x		-				\mathbf{x}
	17368	40/15		-40	101	109			x	48	\mathbf{x}				\mathbf{x}		
	17370	20/10		-40	101	109			x	48	x					\mathbf{x}	
	17372	20/10		-40	100	108			x	48	x				x		
	17375	20/10		-39	100	107			x	48	\mathbf{x}			\mathbf{x}			
	17376	40		-40	101	109			x	48	\mathbf{x}		-				\mathbf{x}
	17378	20		-40	101	109			x	48	\mathbf{x}			\mathbf{x}			
	17381	20		-40	101	109			\mathbf{x}	48	\mathbf{x}		-				\mathbf{x}
	17382	80/20		-39	101	108			x	48	\mathbf{x}		-				\mathbf{x}
	17384	20/10		-39	100	107			x	48	x					\mathbf{x}	
	17385	80/20		-38	100	107			\mathbf{x}	24	x			x		-	
	17386	40		-40	101	109			\mathbf{x}	48	x			-	x		
	17387	40/10		-40	101	109			x	48	\mathbf{x}		-				x
	17400L	229		-44	104	113			\mathbf{x}	48	\mathbf{x}		-				\mathbf{x}
	17401	10		-40	101	109			x	48	\mathbf{x}		-				\mathbf{x}
	17402	40		--42	102	110			\mathbf{x}	48	x			\mathbf{x}			
	17403	40/10		-41	102	111			x	48	x			\mathbf{x}			
	17404	40		-43	103	112			x	96	x						\mathbf{x}
	17405	40/10		-42	103	111			x	48	x					\mathbf{x}	
	17406	40		-44	104	113			x	48	\mathbf{x}		-				x
	17407	40		-43	103	112			X	48	\mathbf{x}		-				x
	17408	40		-43	104	113			\mathbf{x}	48	\mathbf{x}		-				x
	17409	40		-43	105	113			x	48	\mathbf{x}		-				x
	174202	229		-40	103	110			x	24	\mathbf{x}		-		x		-
	17422	79/40		-40	101	109			\mathbf{x}	48	x		-				x
	17423	40/10		-40	101	109			x	48	\mathbf{x}		-				x
	17424	80		-39	101	108			\mathbf{x}	48	\mathbf{x}				x		
	17425	80		-37	100	107			\mathbf{x}	48	x		-				\mathbf{x}
	17426	40/10		-40	102	110			\mathbf{x}	24	x		-		x		-
	17427	80		-38	101	108			\mathbf{x}	48	x					\mathbf{x}	
	17428	40/10		-40	101	109			\mathbf{x}	48	x					x	
	17430	10		-40	102	110			\mathbf{x}	48	x				x		
	17431	40		-41	103	111			\mathbf{x}	48	x		-				\mathbf{x}
	17432	40		-40	102	110			x	48	\mathbf{x}		-				x
	17433	40		-40	103	111			\mathbf{x}	48	x				x		

APPENDIX C

OPTION 4: DATUM CONVERSION COSTS

The hybrid manual/automated datum conversion plan presented as Option 4 is intended to provide full conversion to NAD 83 within 5 years. During this time, 72 charts would be converted by revising the existing datum reference note on each chart and adding a datum transformation note. The remaining charts would require additional cartographic and reproduction actions to shift the existing chart projection. A total of 482 charts would have their projections shifted by manual cartographic procedures; 405 charts would be converted by automated methods.

In addition to the shift in projection, up to 272 charts could require a shift in their LORAN or OMEGA electronic positioning lattices. For planning purposes, it was estimated that 60 percent of the lattices would require revision.

In determining the conversion costs, it was assumed the compilation and reproduction costs under automation would be insignificant. These costs are estimated to be $\$ 50,000$. The manual costs of datum conversion under Option 4 were computed as follows:
A. Cartographic Conversion Costs

1. Chart Projections
a. Number of charts for manual conversion $=482$ charts b. Staff-hours per chart for new projections $=24$ hours c. Cartographer cost per hour = \$19.89*

$$
\text { Cost }=\$ 230,087
$$

2. Inset Projections
d. Insets per chart $=0.45$
e. Staff-hours per inset for new projection $=20$ hours

$$
\text { Cost }=\$ 86,283
$$

3. LORAN/OMEGA Lattices
f. Number of charts with lattices $=272$ charts
g. Assume 60 percent will require shifting
h. Staff-hours per chart to shift lattice $=32$ hours

$$
\text { Cost }=\$ 103,873
$$

[^2]4. Total cartographic labor and materials costs to shift chart and inset projections, and LORAN/OMEGA lattices.

TOTAL Cost $=\$ 420,243$
B. Reproduction Conversion Costs

1. Chart Projections
a. Number of charts for manual conversion $=482$ charts
b. Staff-hours per chart for new projection $=35$ hours
c. Reproduction cost per staff-hour $=\$ 21.50$
d. Material cost per new projection $=\$ 60 /$ chart

Cost $=\$ 391,625$
2. Inset Projections
e. Insets per chart $=0.45$
f. Staff-hours per inset for new projection $=20$ hours
g. Material cost per inset $=\$ 30$

Cost $=\$ 99,774$
3. LORAN/OMEGA Lattices
h. Number of charts with lattices $=272$ charts
i. Number of charts having lattices requiring shift $=60$ percent
j. Staff-hours per chart $=32$ hours
k. Material costs per chart $=\$ 150$

Cost $=\$ 136,761$
4. Total reproduction costs to shift chart and inset projections, and LORAN/OMEGA lattices.

TOTAL Cost $=\$ 628,160$
C. Total conversion costs for manual cartographic and reproduction services for Option 4 is $\$ 1,048,400$.
D. Estimated cost to convert the AIS Data Base to NAD $83=\$ 50,000$
E. Total NAD 83 Conversion Costs are $\$ 1,098,400$.

[^0]: Note: The reference to preliminary NAD 83 data will be deleted from all horizontal datum notes when final values are published.

[^1]: *Charts produced of Guam and the associated trust territories will be converted to WGS 84.

[^2]: *based on salary of GS-11, step 7 (includes overhead, inhouse indirect and other service level user charges)

